

Lichens of ultramafic substrates in North America: a review

Michael Mulroy 👨 , Alan M. Fryday 👨 , Amanda Gersoff 📵 , Jason Dart 👨 cd , Rikke Reese Næsborg 📵 , and Nishanta Rajakaruna 👨 af

^aBiological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA; ^bHerbarium, Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; ^cAlthouse and Meade, Inc., 1602 Spring Street, Paso Robles, CA 93446, USA; ^dRobert F. Hoover Herbarium, Biological Sciences Department, California Polytechnic University, San Luis Obispo, CA 93407, USA; ^cSanta Barbara Botanic Garden, Santa Barbara, CA 93105, USA; ^fUnit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa

Corresponding author: Michael Mulroy (emails: mmulroy@calpoly.edu, mdmulroy21@gmail.com)

Abstract

Lichens are among the most prominent and successful life forms of metal-rich habitats, including ultramafic rocks and soils; however, research on lichens of ultramafic habitats is limited, especially on the North American continent. This review examines geographic and ecological patterns of ultramafic lichen assemblages by synthesizing published reports of lichens of ultramafic substrates in North America, and by creating a database characterizing the ecology and habitat (substrate type, pH affinity, geographic distribution) for all taxa recorded in the literature. This effort yielded a total of 437 lichen species and infraspecific taxa reported from ultramafic substrates in the published literature. Lichen assemblages of ultramafic substrates vary in composition and are dominated by acidophytic taxa with a minor, but consistent, basiphytic component. Species lists from ultramafic habitats in different geographic regions varied widely, suggesting that factors unrelated to substrate, such as climate, have a large effect on lichen assemblage composition. However, several studies showed clear differentiation between lichen composition on nearby or adjacent ultramafic and nonultramafic habitats, suggesting that ultramafic substrates harbor regionally unique lichen assemblages.

Key words: lichen ecology, substrate properties, serpentine

Résumé

Les lichens sont parmi les formes de vie les plus importantes et les plus réussies des habitats riches en métaux, y compris les roches et les sols ultramafiques. La recherche sur les lichens des habitats ultramafiques est toutefois limitée, surtout sur le continent nord-américain. Cette revue examine les profils géographiques et écologiques des assemblages de lichens ultramafiques en synthétisant les rapports publiés sur les lichens des substrats ultramafiques en Amérique du Nord, et en créant une base de données caractérisant l'écologie et l'habitat (type de substrat, pH d'affinité, distribution géographique) pour tous les taxons enregistrés dans la littérature. Cela a permis d'obtenir un total de 437 espèces de lichens et de taxons infraspécifiques rapportés sur les substrats ultramafiques dans la littérature publiée. Les assemblages de lichens des substrats ultramafiques varient en composition et sont dominés par des taxons acidiphiles avec une composante basiphile mineure, mais constante. Les listes d'espèces des habitats ultramafiques de différentes régions géographiques variaient considérablement, ce qui suggère que des facteurs non liés au substrat, comme le climat, ont un effet important sur la composition des assemblages de lichens. Cependant, plusieurs études ont montré une différenciation claire entre la composition des lichens sur des habitats ultramafiques et non ultramafiques proches ou adjacents, ce qui suggère que les substrats ultramafiques abritent des assemblages de lichens uniques au niveau régional. [Traduit par la Rédaction]

Mots-clés: écologie des lichens, propriétés du substrat, serpentine

Introduction

The lichen-substrate relationship

Lichens are among the most successful and prominent life forms in extreme habitats. They occur in almost all biomes on Earth, including latitudinal and altitudinal extremes, as well as the hottest and driest deserts in the world (Alpert 2000; Grube 2010; Armstrong 2017). Lichens have traditionally been defined as a symbiotic association between a fungus (mycobiont) and a photosynthetic partner (photobiont; an alga or cyanobacterium), but the presence of a diversity of

microorganisms that inhabit lichen thalli (Bates et al. 2012) has led some to argue that lichens are better thought of as microecosystems or microbiomes (Hawksworth and Grube 2020). While there are differing views on lichens as a concept, it remains true that a primary mycobiont provides the bulk of a lichen's structure, anchors the lichen in place, and is the source of a lichen's nomenclature and systematic position.

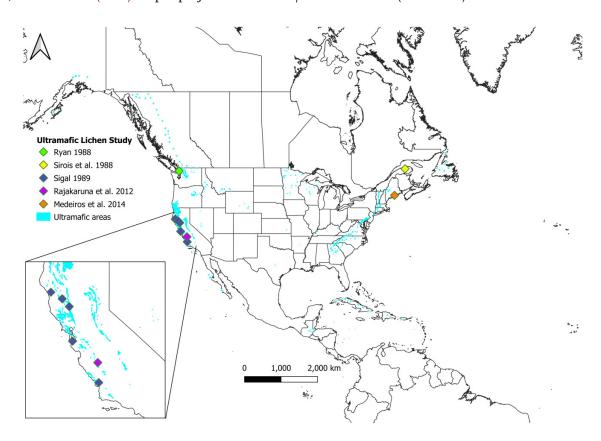
The importance of substrate characteristics to lichen ecology is apparent when comparing lichen biotas on different substrates. Common substrates for lichens include rocks (i.e., saxicolous lichens), tree bark (corticolous), exposed wood (lignicolous), and soil (terricolous), although a much wider range of both natural and anthropogenic substrates are utilized (Brodo et al. 2001). The lichen-substrate relationship is often described as intimate, with many lichen growth forms maintaining close surface contact along much of their lower surface. Unsurprisingly, then, most lichen species have affinities for certain substrate properties (Brodo 1973). Important substrate properties for lichens include surface texture (Brodo 1973), water retention capacity (Garty and Galun 1974), and elemental composition (Purvis and Halls 1996; Rajakaruna et al. 2012). The latter is of particular importance because it largely dictates the pH level at the lichen-substrate interface, and pH plays a paramount role in determining lichen community assembly (Gilbert and James 1987). For this reason, acidophytic (silicicolous) and basiphytic (calcicolous) lichen biotas are widely recognized as distinct (Brodo 1973; Gilbert 1984, 2000).

For saxicolous lichens, the relationship between lichen assemblages and their rock substrates has been well studied. At the local level, research and inventories of lichen biotas of specific rock types (i.e., lithology-specific) are fairly common (e.g., Gilbert 1996; Paukov 2009); however, larger-scale studies at regional, continental, and global scales are rare. To date, the only global-scale, lithology-specific studies of lichens are for ultramafic rocks and soils (Favero-Longo et al. 2004, 2018). To our knowledge, no analogous reviews of lichens of other lithologies have been carried out.

Definition and characteristics of ultramafic rocks/soils

Ultramafic rocks are named for their high concentrations of iron and magnesium relative to other rocks typical of terrestrial environments. Technically, they are defined as igneous and metamorphic rocks composed of >90% of the mafic minerals olivine and pyroxene, and the alteration products of these minerals, e.g., serpentine (Le Maitre et al. 2002). Ultramafic lithologies are widespread on continental landforms, where they make up \sim 1% of global land surfaces (Oze et al. 2007). Most continental ultramafic exposures are ophiolites (oceanic crust and mantle that has been uplifted onto land). Less common types of terrestrial ultramafic lithologies include mélanges, stratiform mafic-ultramafic complexes, and exposed areas of subcontinental mantle (Moores 2011). Essentially all of the world's exposed ultramafic rocks have undergone some degree of serpentinization, a process by which ultramafic parent material is hydrothermally altered

into serpentinite, a metamorphic rock (Malpas 1992). Serpentinite is composed of the serpentine group minerals antigorite, chrysotile, and lizardite (Coleman and Jove 1992).

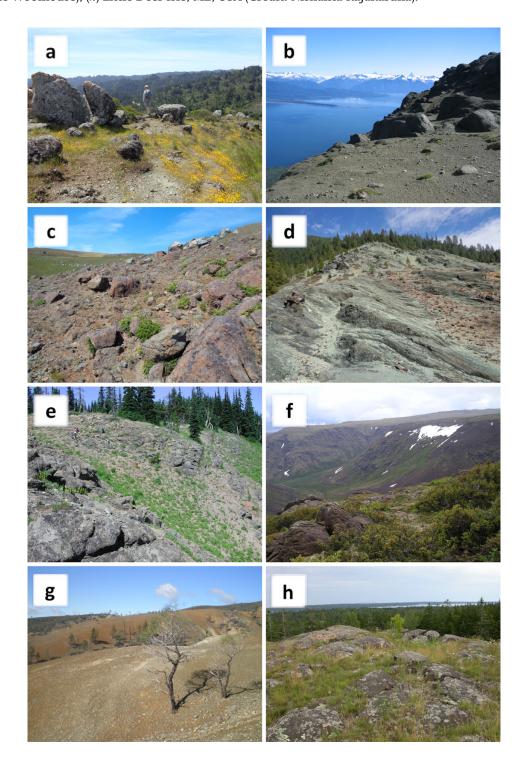

In addition to iron and magnesium, ultramafic rocks and soils are characteristically high in metals such as nickel, chromium, and cobalt. They are also typically low in nutrients essential to plants and other life forms, including nitrogen, phosphorus, potassium, and calcium (Kruckeberg 1992; Rajakaruna and Boyd 2014). The low molar ratio of calcium to magnesium ions (<1:1) in ultramafic soils (Burt et al. 2001) has also been hypothesized as a stressor (Ghasemi et al. 2020), and there is evidence that this may inhibit root growth and cell wall integrity in vascular plants (O'Dell and Claassen 2006; O'Dell and Rajakaruna 2011). This combination of stressors creates a very harsh environment for vascular plants, leading to high rates of ultramafic endemism (Kruckeberg 2002; Galey et al. 2017). To deal with the multiple stressors of ultramafic substrates, plants have evolved a remarkable suite of adaptations, including metal hyperaccumulation and growth forms suited toward tolerance of water stress, soil elemental imbalances, and microhabitat bareness (Brady et al. 2005; O'Dell and Rajakaruna 2011; Sianta and Kay 2019).

Lichens of metal-rich substrates, including ultramafics, worldwide

Lichens of metal-rich rocks and soils and other metalrich substrates, such as mine tailings, have received considerably less attention than vascular plants occurring on such substrates. However, there is a long and consistent history of work on lichens of metal-rich substrates (Purvis and Halls 1996; Favero-Longo 2014). While ecotypic differentiation and geoedaphic endemism are common in vascular plants of metal-rich substrates (O'Dell and Rajakaruna 2011), this trend is not as consistently observed in lichens, particularly in ultramafic substrates (Favero-Longo et al. 2018). However, lichen assemblages of metal-rich substrates are often compositionally unique, and narrow endemism to metal-rich rocks has been thoroughly documented for several lichen species occurring on high-elevation metal-rich sedimentary rocks of the Anakeesta Formation in the southern Appalachians (Lendemer and Harris 2013a, 2013b; Lendemer and Tripp 2015). These same habitats support unique lichen communities that include disjunct populations as well as known heavymetal-tolerant lichen taxa (Lendemer and Harris 2013b). In Great Britain, Purvis and Halls (1996) describe lichen species associations characteristic of metal-rich mine tailings and spoil heaps. Additionally, comparative studies of adjacent ultramafic and nonultramafic substrates often show marked differences in lichen species composition (e.g., Sirois et al. 1988; Favero-Longo and Piervittori 2009; Paukov 2009), suggesting a substrate effect. At the same time, lichen communities of ultramafic substrates display high degrees of species turnover at regional and global scales (Favero-Longo et al. 2004), indicating that factors other than substrate are more important in determining species composition.

Most of the available research on lichens of ultramafic substrates has been carried out in Europe (Wirth 1972;

Fig. 1. Sampling locations for five published studies focusing on ultramafic lichen communities in North America. Ultramafic areas within the lower 48 states of the USA are from Krevor et al. (2009). Ultramafic areas outside the lower 48 states are approximate locations of some of the major ultramafic formations in North America. Base layer sources are as follows: lower 48 states, U.S. Census Bureau (2018); Canada provincial/territorial boundaries, Statistics Canada (2019); all other country boundaries, Natural Earth (2021). Map is projected in WGS 84/Pseudo-Mercator (EPSG:3857).

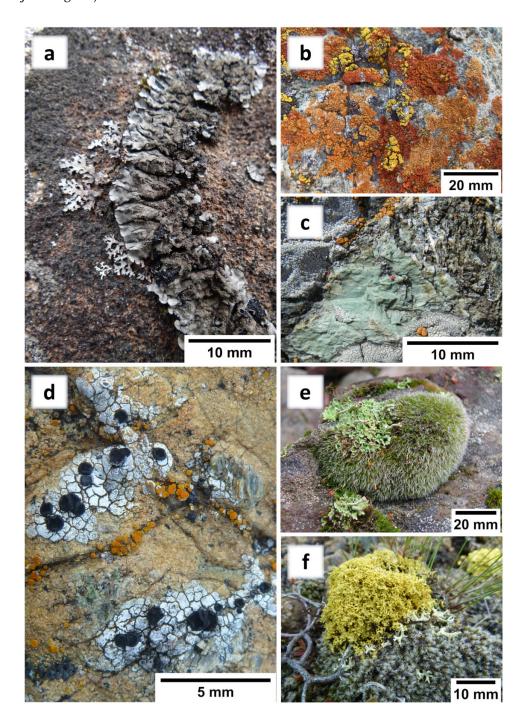


Favero-Longo and Piervittori 2009; Favero-Longo et al. 2018). In a worldwide review of studies investigating lichens of ultramafic substrates, Favero-Longo et al. (2004) found evidence for several ecological trends in ultramafic lichen communities. Perhaps most interestingly, their review indicated that ultramafic substrates harbor a mix of silicicolous and calcicolous lichen species, a finding that has often been noted in studies and observations of lichen biotas on ultramafic substrates (Gilbert 2000; Paukov 2009). Their review also highlighted studies reporting instances of lichens reaching their known latitudinal limits on ultramafic substrates (Wirth 1972; Gilbert 2000). Other reported characteristics, such as low species richness, low percentage cover, and the occurrence of lichen ecotypes, do not appear to be consistent features of ultramafic lichen assemblages (Favero-Longo et al. 2004). Similarly, ultramafic endemism in lichens appears to be very rare, with just eight species currently known only from ultramafic substrates, including five that are known only from their type localities (Favero-Longo et al. 2018). Of these, just one, Porpidia nadvornikiana (Vězda) Hertel, has a disjunct distribution (Fryday 2005), providing strong support for its classification as an ultramafic endemic.

The broad goal of this review is to examine the published literature on lichens of ultramafic substrates, specifically from North America, to better understand patterns of lichen assemblages of ultramafic rocks and soils on the North American continent (see Figs. 1–3). Studies of lichens of mafic substrates, such as gabbro and basalt, are not considered here, although these substrates share some compositional similarities to ultramafic substrates (e.g., relatively high metal content), and often support distinctive vascular plant communities. In eastern North America, lichens of diabase, a type of mafic rock, have received some attention (Lendemer 2005; Waters and Lendemer 2019).

The first step of this review was to compile an updated list of lichen taxa reported on ultramafic substrates within North America from the published literature. To the extent possible, we then compared the attributes of ultramafic lichen assemblages with those of nonultramafic substrates. We were interested in exploring (1) attributes of lichen taxa on ultramafic substrates; (2) similarities and differences of ultramafic and nonultramafic lichen assemblages under similar abiotic conditions; (3) patterns of lichen richness and diversity within and among ultramafic habitats, as well as compared to that of nonultramafic habitats; (4) geographic distributions of lichens of ultramafic substrates (i.e., prevalence of widespread/cosmopolitan taxa versus taxa with restricted ranges); and (5) spatial variation in ultramafic lichen

Fig. 2. Examples of ultramafic rocks and soils in North America. (a) Ultramafic outcrop near Kneeland, Humboldt Co., CA, USA (Credit: Ryan O'Dell); (b) Kane Peak, AK, USA (Credit: US Forest Service by Karen Dillman); (c) Carson Ridge, Marin Co., CA, USA (Credit: Ryan O'Dell); (d) Ramshorn Creek, Sierra Co., CA, USA (Credit: Ryan O'Dell); (e) Olivine Mountain, BC, Canada (Credit: Gary Lewis); (f) Mont Albert, QC, Canada (Credit: Denise and Anthony Fernando); (g) Clear Creek, San Benito Co., CA, USA (Credit: Suzie Woolhouse); (h) Little Deer Isle, ME, USA (Credit: Nishanta Rajakaruna).


assemblages, including an assessment of the relative importance of abiotic factors on assemblage composition. Lastly, we sought to identify gaps in our knowledge of ultramafic lichens in North America to help focus future research and surveys.

Methods

Literature review and data compilation

We compiled information on every lichen taxon reported in each of six published studies that investigated lichen

Fig. 3. Lichens on ultramafic substrates in North America. (a) Coccocarpia palmicola at Little Deer Isle, ME, USA (Credit: Alan Fryday); (b) lichens on ultramafic outcrop in eastern San Luis Obispo Co., CA, USA (Credit: Michael Mulroy); (c) lichens on serpentinite, Irish Hills Nature Reserve, San Luis Obispo Co., CA, USA (Credit: Michael Mulroy); (d) saxicolous lichens including Lecidea lapicida (Ach.) Ach. in Mont Albert, QC, Canada (Credit: Jean Gagnon); (e) Cladonia sp. growing on moss, in BC, Canada (Credit: Gary Lewis); (f) Vulpicida juniperina (L.) J.-E. Mattson & M.J. Lai and other lichens growing among mosses in Mont Albert, QC, Canada (Credit: Jean Gagnon).

biotas of ultramafic substrates in North America (Fig. 1 and Table 1; North America is defined here to include Central America, Mexico, the Caribbean, the USA, Canada, Greenland, and Saint Pierre and Miquelon). The results of one of the studies, Harris et al. (2007), were included in a more recent study that added to the list of species for that location (Medeiros et al. 2014). Thus, for the purposes of

this review, we only consider the ultramafic species list from the latter study. In addition, we conducted a literature search for published articles containing reports of lichens on ultramafic substrates. Taxonomic reports from 18 published articles and one lichen flora were added (see Table 2), resulting in an additional 105 taxa being included in analyses. Lichens considered to be growing on ultramafic

Table 1. Published studies of ultramafic lichen communities on the North American continent as of 2021.

Study	Locality	Latitude	Elevation range (m)	Average mean precipitation (cm)	Study type
Ryan (1988 <i>a</i>)	Fidalgo Island, Skagit Co., WA, USA	48.5	0–5	71*	Inventory of marine and maritime lichens of ultramafic rocks. Complemented by a quantitative ecological study of the same site (Ryan 1988b)
Sirois et al. (1988)	Mont Albert, QC, Canada	48.9	900–1150	166	Compared lichen communities of serpentinized peridotite (ultramafic) and amphibolite (mafic) substrates using quantitative (relevé plot) sampling methods
Sigal (1989)	Five sites in Northern and Southern Coast Ranges, CA, USA	35.4–39.9	183–1890	51–180	Compared ultramafic lichen communities along a latitudinal gradient in central California using inventory collecting methods
Rajakaruna et al. (2012)	New Idria, San Benito Co., CA, USA	36.3	841-1422	50	Compared lichen communities of adjacent ultramafic and nonultramafic substrates using inventory collecting methods
Medeiros et al. (2014)	Little Deer Isle, Hancock Co., ME, USA	44.3	45	138	Compared lichens recorded from ultramafic substrates and nonultramafic metal-enriched substrates using nonstandardized inventory methods

^{*}Data acquired from outside source (Western Regional Climate Center 2021).

substrates included taxa growing on other lichens (i.e., lichenicolous lichens, including some nonlichenized fungi) and bryophytes (bryicolous lichens) that were themselves growing on ultramafic rocks or soils. Nomenclature mainly follows Esslinger (2019) with a small number of taxa following Index Fungorum (Index Fungorum Partnership 2021).

For all taxa identified in our literature review, we gathered available information on substrate affinity, habitat, and geographic range from selected herbarium records and online databases. These data were compiled into a single database that we used to investigate the characteristics of lichens occurring on ultramafic substrates in North America. It is important to note that a review of accessioned herbarium specimens reported from ultramafic substrates was beyond the scope of this review and was not conducted.

Substrate affinity

We attempted to characterize the substrate pH affinity for each taxon identified. To do this, we compiled species substrate affinity information available from several sources: (1) where available, substrate pH affinity information was gathered from species descriptions in Lichens of the Greater Sonoran Desert Region (Nash et al. 2002, 2004, 2007); (2) for some taxa, substrate pH affinity information was obtained from LIAS.net (LIAS 2021); (3) for widely distributed species, pH affinity information from the Information System on Italian Lichens (ITALIC) database and the Nimis lichen herbarium database were also referenced (Nimis 2016, 2021). Based on an assessment of the totality of these sources, we assigned each lichen species to one of six substrate pH affinity

categories: acidic, acidic to neutral, neutral, neutral to basic, basic, and generalist. For many species, there was insufficient information to make a confident pH affinity assignment, and in such cases affinity categories were not assigned. Despite our efforts to provide accurate substrate pH affinity information for as many taxa as possible, this categorization is likely prone to bias (e.g., from uneven distribution in substrate type for collections of a given taxon, as well as geographic bias in collections and observations). As a result, the substrate pH affinity categorizations provided here should be considered provisional and not necessarily fully reflective of a taxon's substrate pH affinity across its entire range.

In addition to pH affinity, we designated substrate types for each lichen taxon according to its degree of restriction to one or more substrates. Substrate-type designations were based on available information from the same sources referenced for substrate pH affinity designations. Substrate-type designations should also be considered provisional, as a full inventory of online herbarium records for each species was not undertaken. Similar to pH affinity, for some taxa information on substrate is scant and collections may be biased toward certain substrates or regions. In some cases, a lichen's substrate specificity was unclear due to insufficient information, and in these cases a provisional substrate type was not designated.

North American endemism

We created a list of taxa reported from ultramafic substrates that currently appear to be endemic to North America. The distributions of lichen species were obtained from the Global Biodiversity Information Facility (GBIF; GBIF Secretariat 2021) and the Consortium of North American Lichen

Table 2. Published floras and peer-reviewed articles including records of lichens on ultramafic substrates in North America.

Study	Locality	Details
Reed (1986)	Eastern North America (USA and Canada)	List of identified lichens and associated herbarium specimens collected from areas of serpentinite in eastern North America. Includes records of epiphytic lichen specimens in ultramafic habitats. Records included here are restricted to lichens confirmed from ultramafic rocks and soils
Bratt and Wright (1995)	CA, USA	An account of <i>Toninia</i> species known from California, including two taxa described as occurring on serpentine
Doell and Wright (1996)	San Mateo Co., CA, USA	Inventory of macrolichens identified from Jasper Ridge Biological Preserve, San Mateo County, California. Includes records of three macrolichen species growing on serpentine
Magney (1999)	CA, USA	Preliminary list of rare lichens known from California, including one taxon reported growing on serpentine
Breuss and Bratt (2000)	CA, USA	Treatment of catapyrenioid lichens known from California. Provides species descriptions and distribution and ecology details for two taxa reported growing on serpentine
Jørgensen (2000)	USA and Canada	Treatment of lichens in the family Pannariaceae in North America north of Mexico. Lists and provides descriptions of lichen taxa, including one taxon reported growing on serpentine
Robertson (2000)	CA, USA	Reports new and interesting lichen records from California, including records of four lichen taxa collected from serpentine
Baltzo (2001)	San Mateo Co., CA, USA	Annotated list of lichens of the San Francisco watershed, including reports of six taxa occurring on serpentine
Robertson and Robertson (2001)	CA, USA	Reports of new and interesting lichen records from California, including two lichen taxa collected from serpentine
Peterson (2003)	CA, USA	Description of three <i>Umbilicaria</i> species new to California, including two species collected from an ultramafic rock outcrop in Del Norte County, California
Lendemer (2004)	MD, USA	Descriptions of notable herbarium specimens from eastern North America. Includes one record of a newly described lichen, <i>Clavascidium lacinulatum</i> var. <i>atrans</i> (Breuss) M. Prieto from serpentine soil
Lendemer (2008)	Eastern North America (USA)	Description of eastern disjunct populations of <i>Psora icterica</i> (Mont.) Müll. Arg. growing on serpentine barrens in Maryland and Pennsylvania
Robertson and Robertson (2008)	Mt. Burdell Open Space, Marin Co., CA, USA	List of lichens identified from a lichen foray, including 19 taxa growing on serpentine rocks and soils
Doell et al. (2009)	Claremont Canyon, Alameda Co., CA, USA	List of lichens identified from various habitats within Claremont Canyon in Alameda County. Includes 14 taxa collected from serpentine
Lendemer et al. (2009)	CA, USA	Summary of occurrences of the genus <i>Ramonia</i> in California. Describes a new species, <i>Ramonia extensa</i> Lendemer, K. Knudsen and Coppins, only known from its type locality on serpentine
Benson et al. (2012)	San Francisco Co., CA, USA	Compilation of the results of lichen inventories carried out in the Presidio of San Francisco. Includes records of two species on serpentine
Benson (2016)	Sedgwick Reserve, Santa Barbara Co., CA, USA	Reports lichens identified during forays at the 2016 California Lichen Society annual meeting in Southern California, including 18 records of lichens on serpentine from the Sedgwick Reserve
McMullin et al. (2017)	Parc National de la Gaspésie, QC, Canada	Reports 100 new records of lichens for Québec, Canada from Parc National de la Gaspésie. Includes one record of a lichen growing on serpentine rock
Tucker (2017)	CA, USA	Reports rare lichens collected in California by Judy and Ron Robertson. Includes one new record of a lichen growing on serpentine

Herbaria (CNALH), which shows collection records for locations in North America and elsewhere (CNALH 2021). A taxon was considered potentially endemic to North America if there were no records outside of North America, or if scant records outside of North America appeared to be in error.

Results

After updating the nomenclature of all lichens reported from the published literature examined for this review, a total of 437 currently accepted lichen taxa (including lichenicolous fungi) identified to the species or infraspecies level were recorded (Table 3). In addition, Table 3 includes 33

taxa that were identified only to the genus level, three taxa belonging to a species complex and identified to the "group" level, and three taxa that were considered similar to known taxa but whose identities were not confirmed (denoted by "cf."). Of the taxa listed in Table 3, 371 were recorded in one or more of the five published studies that were the main focus of this review (Table 1). An additional 105 taxa were added from other published literature (Table 2).

Substrate affinity

Of the 437 taxa identified to species recorded on ultramafic substrates in North America, 126 (29%) were not assigned a

Table 3. Lichen species recorded from ultramafic substrates in North America in the published literature.

	Current species name	Name used in study	Studies found	Substrate pH	Substrate type
		(if different)		affinity	
1	Acarospora americana H. Magn.	_	d	_	_
	Acarospora fuscata (Schrad.) Arnold	_	c, e, 1	acidic	sax
	Acarospora rosulata (Th. Fr.) H. Magn.	_	d, 17	acidic	sax
	Acarospora schleicheri (Ach.) A. Massal.	_	c, 1	neutral	terr
	Acarospora socialis H. Magn.	_	d	_	sax
	Acarospora thamnina (Tuck.) Herre	_	d	acidic	sax
	Alectoria ochroleuca (Schrank) A. Massal.	_	b	acidic to neutral	terr
	Amandinea punctata (Hoffm.) Coppins & Scheid.	Buellia punctata (Hoffm.) A. Massal.	c, e, 1	acidic to neutral	cort, lig
	Anaptychia palmulata (Michx.) Vain.	_	e	_	_
0	Arthonia glebosa Tuck.	_	13	_	terr
1	Arthonia phaeobaea (Norman) Norman	_	a	acidic	sax
2	Arthonia varians (Davies) Nyl.	_	d	-	lich
3	Arthonia sp. 2	_	a	-	-
1	Aspicilia cinerea (L.) Körb.	_	c, 1	neutral	sax
5	Aspicilia confusa Owe-Larsson & A. Nordin	_	d	-	sax
5	Aspicilia cuprea Owe-Larsson & A. Nordin	_	d	-	sax
7	Aspicilia pacifica Owe-Larsson & A. Nordin	_	17	_	sax
3	Aspicilia phaea Owe-Larsson & A. Nordin	_	d	-	sax
9	Aspicilia praecrenata (Nyl. ex Hasse) Hue	_	d	-	sax, terr
0	Aspicilia cf. caesiocinerea	_	8		_
1	Aspicilia sp.	_	a	_	_
2	Athallia holocarpa (Hoffm.) Arup, Frödén & Søchting	Caloplaca holocarpa (Hoffm.) A.E. Wade	b, e	generalist	cort, lig
3	Athallia scopularis (Nyl.) Arup, Frödén & Søchting	Caloplaca scopularis (Nyl.) Lettau	e	acidic	sax
4	Bacidia scopulicola (Nyl.) A.L. Sm.	_	a	_	sax
5	Bacidia sp. 2	_	a	_	_
5	Baeomyces rufus (Hudson) Rebent.	_	b	neutral	sax, terr
7	Bellemerea cinereorufescens (Ach.) Clauzade & Cl. Roux	_	b	acidic	sax
8	Biatora subduplex (Nyl.) Printzen*	Biatora vernalis (L.) Fr.	b	generalist	gen
9	Bibbya ruginosa (Tuck.) Kistenich, Timdal, Bendiksby & S. Ekman subsp. ruginosa	Toninia ruginosa subsp. ruginosa (Tuck.) Herre	d, 2	_	sax, terr
0	Bilimbia sabuletorum (Schreb.) Arnold	Mycobilimbia sabuletorum (Schreb.) Hafellner	b	neutral	bry
1	Blastenia ammiospila (Wahlenb.) Arup, Søchting & Frödén	Caloplaca cinnamomea (Th. Fr.) H. Olivier	b	generalist	bry, terr
2	Blennothallia fecunda (Degel.) Otálora, P.M. Jørg. & Wedin	Collema fecundum Degel.	a	_	sax
3	Bryobilimbia hypnorum (Lib.) Fryday, Printzen & S. Ekman	Lecidea hypnorum Lib.	b	generalist	terr
4	Bryocaulon divergens (Ach.) Kärnefelt	Coelocaulon divergens (Ach.) R. Howe	b	_	terr
5	Bryoplaca sinapisperma (Lam. & DC.) Søchting, Frödén & Arup	Caloplaca sinapisperma (DC.) Maheu & A. Gillet	b	neutral to basic	bry, terr
6	Bryoplaca tetraspora (Nyl.) Søchting, Frödén & Arup	Caloplaca tetraspora (Nyl.) H. Olivier	b	neutral to basic	bry, terr
7	Bryoria americana Gyelnik	Bryoria trichodes (Ach.) Brodo & Hawksw.	1	_	cort
8	Bryoria nitidula (Th. Fr.) Brodo & D. Hawksw.	_	b	_	terr
9	Buellia aethalea (Ach.) Th. Fr.	_	d	acidic to neutral	sax
0	Buellia badia (Fr.) A. Massal.	_	c, d	acidic	lich
1	Buellia dispersa A. Massal.	Buellia tergestina J. Steiner & Zahlbr.	b, d	neutral	sax
2	Buellia lepidastra (Tuck.) Tuck.	_	e		

Table 3. Continued

	Current species name	Name used in study (if different)	Studies found	Substrate pH affinity	Substrate type
43	Buellia leptocline (Flotow) A. Massal.	_	b	acidic	sax
44	Buellia maculata Bungartz	Buellia stigmaea Tuck.	1	_	sax
! 5	Buellia nashii Bungartz	_	d	_	sax
16	Buellia ocellata (Flotow) Körb.	_	d, e	acidic	sax
7	Buellia sequax (Nyl.) Zahlbr.	Buellia abstracta (Nyl.) H. Olivier	d	neutral	sax
8	Buellia spuria (Schaer.) Anzi	_	c, 1	acidic to neutral	sax
9	Buellia stellulata (Taylor) Mudd	_	c, 8	neutral	sax
0	Buellia vilis Th. Fr.	_	С	acidic	sax
1	Calogaya biatorina (A. Massal.) Arup, Frödén & Søchting	Caloplaca biatorina (Trevis.) J. Steiner	d	basic	sax
2	Calogaya lobulata (Flörke) Arup, Frödén & Søchting	Caloplaca lobulata (Flörke) Hellb.	1	acidic to neutral	cort
3	Caloplaca albovariegata (B. de Lesd.) Wetmore	_	d	generalist	sax
4	Caloplaca cerina (Ehrh. ex Hedwig) Th. Fr.	Caloplaca gilva A. Zahlbr.	1	neutral to basic	cort
5	Caloplaca cinnabarina (Th. Fr.) Zahlbr.	_	1	_	sax
6	Caloplaca demissa (Körb.) Arup & Grube	_	d, 7	neutral	sax
7	Caloplaca epithallina Lynge	_	d	neutral	lich
8	Caloplaca lithophila H. Magn.	_	e	basic	sax
9	Caloplaca cf. squamosa	_	8		_
0	Caloplaca sp. 3	_	a		_
1	Caloplaca sp. 4	_	a		_
2	Caloplaca sp. 5	_	a	_	_
3	Caloplaca sp. 6	_	a	_	_
4	Caloplaca sp., Unknown #1	_	С	_	_
5	Caloplaca sp., Unknown #2	_	С	_	
5	Calvitimela aglaea (Sommerf.) Hafellner		19	acidic	sax
7	Candelaria concolor (Dickson) Stein		c, d, 1	neutral to basic	gen
8	Candelaria pacifica M. Westb. & Arup		17	neutral to basic	cort, lig
9	Candelariella aurella (Hoffm.) Zahlbr.	_	a, d, e	basic	sax
0	Candelariella citrina B. de Lesd.	_	d d		sax
1	Candelariella efflorescens Harris & Buck	_	1	neutral to basic	cort
2	Candelariella rosulans (Müll. Arg.) Zahlbr.	_	d, 17	generalist	sax
3	Candelariella vitellina (Hoffm.) Müll. Arg.		b, c, d, e, 1	acidic to neutral	sax
4	Canoparmelia caroliniana (Nyl.) Elix & Hale	Pseudoparmelia caroliniana (Nyl.) Hale	1	—	cort
5	Catapyrenium cinereum (Pers.) Körb.	_	С	neutral to basic	terr
6	Catillaria chalybeia (Borrer) A. Massal.		a	generalist	sax
7	Catillaria lenticularis (Ach.) Th. Fr.	_	c, e	neutral to basic	sax
8	Catillaria sp. 2	_	a		
9	Catolechia wahlenbergii (Ach.) Körb.	_	b	acidic to neutral	sax
0	Cetraria aculeata (Schreb.) Fr.	Coelocaulon aculeatum (Schreb.) Link	b	acidic to neutral	terr
1	Cetraria ericetorum Opiz subsp. ericetorum	_	b	acidic to neutral	terr
2	Cetraria islandica subsp. crispiformis (Räsänen) Kärnefelt	_	b	acidic to neutral	terr
3	Cetraria islandica (L.) Ach. subsp. islandica	_	b	generalist	terr
4	Cetraria laevigata Rass.	_	b	_	terr
5	Cetrariella delisei (Schaer.) Kärnefelt & A. Thell	Cetraria delisei (Boy ex Schaer.) Nyl.	b	_	terr
6	Chrysothrix candelaris (L.) J.R. Laundon	_	a	acidic	gen
7	Circinaria caesiocinerea (Nyl. ex Malbr.) A. Nordin, Savić & Tibell	Aspicilia caesiocinerea (Nyl. ex Malbr.) Arnold	c	generalist	sax
8	Cladonia acuminata (Ach.) Norrlin		b, e, 1	neutral to basic	terr
9	Cladonia amaurocraea (Flörke) Schaer.	_	b	acidic	gen

Table 3. Continued

	Current species name	Name used in study	Studies found	Substrate pH	Substrate type
	-	(if different)		affinity	
90	Cladonia apodocarpa Robbins		1		terr
91	Cladonia arbuscula (Wallr.) Flotow	Cladina arbuscula (Wallr.) Hale & W. Culb.	1	acidic to neutral	bry, terr
2	Cladonia atlantica Evans	_	1		
3	Cladonia boryi Tuck.	_	e, 1	_	-
4	Cladonia cariosa (Ach.) Sprengel	_	e, 1	acidic to neutral	terr
5	Cladonia carneola (Fr.) Fr.	_	b	acidic	lig, terr
6	Cladonia cenotea (Ach.) Schaer.	_	b	acidic	lig
7	Cladonia chlorophaea (Flörke ex Sommerf.) Sprengel	_	b, e, 1	acidic to neutral	gen
8	Cladonia coccifera (L.) Willd.	_	b, 1	acidic	terr
9	Cladonia coniocraea (Flörke) Sprengel	_	b, c, 1	acidic to neutral	lig
00	Cladonia crispata (Ach.) Flotow	_	b, 1	acidic	bry, terr
01	Cladonia cristatella Tuck.	_	e, 1	_	_
02	Cladonia cryptochlorophaea Asahina	_	e, 1	_	_
03	Cladonia cyanipes (Sommerf.) Nyl.	_	b	acidic	lig, terr
04	Cladonia cylindrica (Evans) Evans	_	1	_	_
05	Cladonia decorticata (Flörke) Sprengel	_	b	acidic	terr
06	Cladonia deformis (L.) Hoffm.	_	b	acidic	lig, terr
07	Cladonia digitata (L.) Hoffm.	_	b	acidic	lig, terr
.08	Cladonia dimorphoclada Robbins	_	e, 1	_	_
.09	Cladonia farinacea (Vain.) Evans	_	1	_	terr
10	Cladonia furcata (Hudson) Schrad.	_	b, 1	generalist	terr
11	Cladonia glauca Flörke		b	acidic	_
12	Cladonia gracilis subsp. gracilis (L.) Willd.	_	b, 1	acidic	lig, terr
13	Cladonia grayi G. Merr. ex Sandst.	_	e, 1	acidic	_
14	Cladonia macilenta Hoffm.		e	acidic	lig, terr
15	Cladonia macilenta var. bacillaris (Ach.) Schaer.	Cladonia bacillaris Nyl.	b, 1	_	lig, terr
16	Cladonia macrophylla (Schaer.) Stenh.		b	acidic	terr
17	Cladonia mateocyatha Robbins	_	1	_	terr
18	Cladonia maxima (Asahina) Ahti	_	b	_	bry, terr
19	Cladonia mitis Sandst.	Cladina mitis (Sandst.) Hustich	b, e, 1	acidic to neutral	terr
20	Cladonia multiformis G. Merr.	_	1	_	lig, terr
21	Cladonia ochrochlora	_	14	_	_
22	Cladonia petrophila R.C. Harris	_	1	acidic to neutral	sax
123	Cladonia peziziformis (With.) J. R. Laundon	Cladonia capitata (Michx.) Sprengel	1	acidic	terr
124	Cladonia phyllophora Hoffm.	_	b	acidic	terr
125	Cladonia piedmontensis G. Merr.	_	1	-	_
26	Cladonia pleurota (Flörke) Schaer.	_	b, e, 1	acidic	lig, terr
27	Cladonia pseudorangiformis Asahina	_	b	-	terr
28	Cladonia pyxidata (L.) Hoffm.	_	b, c, e, 1	acidic to neutral	terr
29	Cladonia ramulosa (With.) J. R. Laundon	Cladonia pityrea (Florke) Fr.	1	acidic	lig, terr
30	Cladonia rangiferina (L.) F.H. Wigg.	Cladina rangiferina (L.) Nyl.	b, 1	acidic to neutral	terr
31	Cladonia rei Schaer.	_	e, 1	acidic to neutral	terr
32	Cladonia robbinsii Evans	_	1	_	_
33	Cladonia scabriuscula (Delise) Nyl.	_	b	neutral	terr
134	Cladonia squamosa (Scop.) Hoffm.	_	b, e, 1	acidic	_
135	Cladonia stellaris (Opiz) Pouzar & Vězda	Cladina stellaris (Opiz) Brodo	b	acidic	terr
136	Cladonia strepsilis (Ach.) Grognot	_	1	acidic	bry, terr
137	Cladonia subcariosa Nyl.	Cladonia clavulifera Vain., Cladonia polycarpoides Nyl.	e, 1	neutral to basic	terr
38	Cladonia subtenuis (Abbayes) Mattick	Cladina subtenuis (des. Abb.)	1	_	_
139	Cladonia subulata (L.) F.H. Wigg.	· · · · · · · · · · · · · · · · · · ·	b	neutral	terr

Table 3. Continued

	Current species name	Name used in study (if different)	Studies found	Substrate pH affinity	Substrate type
140	Cladonia sulphurina (Michx.) Fr.		b	acidic	lig, terr
41	Cladonia symphycarpa (Ach.) Fr.	_	e	basic	terr
42	Cladonia turgida Ehrh. ex Hoffm.		b, e, 1	acidic	terr
43	Cladonia uliginosa Ahti (Ahti)	Cladonia stricta var. uliginosa Ahti	b	_	terr
44	Cladonia uncialis (L.) F.H. Wigg.	_	b, e, 1	acidic to neutral	terr
45	Clavascidium lacinulatum (Ach.) M. Prieto	Placidium lacinulatum (Ach.) Breuss	13	basic	terr
46	Clavascidium lacinulatum var. atrans (Breuss) M. Prieto	Placidium lacinulatum var. atrans (Ach.) Breuss	11	_	terr
l 47	Coccocarpia palmicola (Sprengel) Arv. & D.J. Galloway	Coccocarpia cronia (Tuck.) Vain.	e, 1	neutral to basic	sax, terr
48	Collema furfuraceum (Arnold) Du Rietz	_	d	neutral	gen
49	Collema subflaccidum Degel.	_	e	neutral	gen
50	Collemopsidium halodytes (Nyl.) Grube & B.D. Ryan	Pyrenocollema halodytes (Nyl.) R. Harris	a	basic	sax
51	Collemopsidium sp. 2	Pyrenocollema sp. 2	a	_	
52	Collemopsidium sp. 3	Pyrenocollema sp. 3	a	_	_
53	Dactylospora urceolata (Th. Fr.) Arnold	_	b	_	lich
54	Dermatocarpon americanum Vain.	_	13	-	sax
55	Dermatocarpon leptophyllodes (Nyl.) Vain. ex Hav.	_	d, e	_	sax
56	Dermatocarpon luridum (With.) J.R. Laundon	Dermatocarpon weberi (Ach.) Mann	b, 1	neutral	sax
57	Dermatocarpon miniatum (L.) W. Mann	_	c, e, 1, 8	neutral to basic	sax
58	$\label{eq:continuous} \textit{Dermatocarpon rivulorum (Arnold) Dalla Torre~\&~ Sarnth.}$	_	b	acidic to neutral	sax
59	Dibaeis baeomyces (L.f.) Rambold & Hertel	_	e	acidic	terr
60	Dimelaena oreina (Ach.) Norman	_	d, 17	acidic to neutral	sax
61	Dimelaena radiata (Tuck.) Müll. Arg.	_	c	acidic to neutral	sax
62	Dimelaena thysanota (Tuck.) Hale & W.L. Culb.	_	d, 17	acidic	sax
63	Diploschistes actinostoma (Ach.) Zahlbr.	_	14	neutral to basic	sax
64	Diploschistes muscorum (Scop.) R. Sant.	_	14	neutral to basic	bry, terr
65	Diploschistes scruposus (Schreb.) Norman	_	c, 1, 14	neutral	sax
66	Diplotomma alboatrum (Hoffm.) Flotow	_	c	neutral to basic	gen
67	Enchylium tenax (Sw.) Gray	Collema tenax (Sw.)	1, 13, 14	neutral to basic	bry, terr
68	Endocarpon sp.	_	13	_	-
69	Endococcus propinquus (Körb.) D. Hawksw.	_	b	_	lich
70	Ephebe lanata (L.) Vain.	_	b, 1	acidic to neutral	sax
71	Euopsis pulvinata (Schaer.) Nyl.	_	c	acidic	sax
72	Flavocetraria cucullata (Bellardi) Kärnefelt & A. Thell	Cetraria cucullata (Bellardi) Ach.	b	neutral	terr
73	Flavocetraria nivalis (L.) Kärnefelt & A. Thell	Cetraria nivalis (L.) Ach.	b	neutral	terr
74	Flavoparmelia baltimorensis (Gyelnik & Fóriss) Hale	Pseudoparmelia baltimorensis (Gyelnik & Fóriss) Hale	1	_	sax
75	Flavoparmelia caperata (L.) Hale	Pseudoparmelia caperata (L.) Hale	e, 1	neutral	cort, lig
76	Flavoplaca citrina (Hoffm.) Arup, Frödén & Søchting	Caloplaca citrina (Hoffm.) Th. Fr.	a, 1	neutral to basic	sax
77	Flavoplaca microthallina (Wedd.) Arup, Frödén & Søchting	Caloplaca microthallina Wedd.	e	acidic to neutral	sax
78	Flavopunctelia flaventior (Stirton) Hale	_	c	acidic	gen
79	Fuscopannaria cyanolepra (Tuck.) P.M. Jørg.	Parmeliella cyanolepra (Tuck.) Herre	c	_	terr
80	Fuscopannaria praetermissa (Nyl.) P.M. Jørg.	Pannaria praetermissa Nyl.	b, e	neutral to basic	bry
81	Fuscopannaria thiersii P.M. Jørg.	_	6	_	_
82	Gowardia nigricans (Ach.) P. Halonen et al.	Alectoria nigricans (Ach.) Nyl.	b	acidic	terr
83	Graphis scripta (L.) Ach.	_	1	acidic to neutral	cort

Table 3. Continued

	Current species name	Name used in study (if different)	Studies found	Substrate pH affinity	Substrate type
184	Gyalecta russula (Körb. ex Nyl.) Baloch, Lumbsch & Wedin		b	neutral	sax
185	Gyalolechia flavorubescens (Hudson) Søchting, Frödén & Arup	Caloplaca aurantiaca (Lightf.) Th. Fr.	1	acidic to neutral	cort
186	Heterodermia obscurata (Nyl.) Trev.	_	1	acidic to neutral	bry, cort
87	Heterodermia speciosa (Wulf.) Trev.	_	1	acidic to neutral	gen
.88	Hydropunctaria maura (Wahlenb.) C. Keller, Gueidan & Thüs	Verrucaria maura Wahlenb. ex Ach.	a	acidic	sax
89	Hyperphyscia syncolla (Tuck. ex Nyl.) Kalb	Physciopsis syncolla (Tuck.) Poelt.	1	_	_
90	Hypogymnia physodes (L.) Nyl.	_	b, 1	acidic to neutral	cort, lig
91	Hypogymnia vittata (Ach.) Parrique	_	b	acidic	cort
92	Hypotrachyna horrescens (Taylor) Krog & Swinscow	Parmelina horrescens (Taylor) Hale	1	acidic to neutral	cort
93	Hypotrachyna livida (Taylor) Hale	_	1	_	cort, sax
94	Hypotrachyna minarum (Vain.) Krog & Swinscow	Parmelina dissecta (Nyl.) Hale	1	acidic	cort
95	Icmadophila ericetorum (L.) Zahlbr.	_	b	acidic	lig, terr
96	Ionaspis odora (Ach.) Th. Fr.	_	b	acidic	sax
97	Ionaspis sp.	_	a	_	
98	Lecania pacifica Zahlbr. ex B. D. Ryan & van den Boom	_	16	acidic to neutral	sax
99	Lecania sp. 1	_	a	_	_
00	Lecania sp. 2		a	_	_
01	Lecanora albella (Pers.) Ach.	Lecanora pallida (Schreb.) Rabenh.	1	acidic	cort
02	Lecanora argentea Oxner & Volkova	_	e	_	sax
03	Lecanora argopholis (Ach.) Ach.	_	c	neutral	sax
04	Lecanora epibryon (Ach.) Ach.	_	b	neutral to basic	bry, terr
05	Lecanora gangaleoides Nyl.	_	14	acidic to neutral	sax
06	Lecanora hybocarpa (Tuck.) Brodo	Lecanora pseudochlarotera Brodo ined.	1	acidic to neutral	cort
207	Lecanora intricata (Ach.) Ach.	_	d	neutral	sax
08	Lecanora mellea W.A. Weber	_	17	acidic to neutral	sax
09	Lecanora placidensis (H. Magn.) Knoph, Leuckert & Rambold	Lecidea placidensis H. Magn.	b	_	sax
10	Lecanora polytropa (Ehrh.) Rabenh.	_	b, c, e	acidic to neutral	sax
11	Lecanora pseudistera Nyl.	Lecanora galactinula Vain.	1	acidic to neutral	sax
12	Lecanora pulicaris (Pers.) Ach.	_	c	acidic	cort
13	Lecanora rupicola (L.) Zahlbr.	_	d	acidic to neutral	sax
14	Lecanora sierrae B.D. Ryan & T.H. Nash	_	d	acidic	sax
15	Lecanora strobilina (Sprengel) Kieff.	_	1	acidic	cort
16	Lecanora xylophila Hue	Lecanora grantii H. Magn.	a	-	cort
17	Lecanora cf. dispersa	_	a	_	_
18	Lecanora sp.	_	c	_	_
19	Lecidea atrobrunnea (Ramond ex Lam. & DC.) Schaer.	_	c, 14	acidic	sax
20	Lecidea atrobrunnea group	_	13	-	
21	Lecidea brunneofusca H. Magn.	_	b	-	sax
22	Lecidea cyrtidia Tuck.	_	1	-	sax
23	Lecidea fuscoatra (L.) Ach.	_	c	acidic to neutral	sax
24	Lecidea laboriosa Müll. Arg.	_	d, 17	acidic	sax
25	Lecidea tessellata Flörke	_	b, c, d, 17	neutral	sax
26	Lecidea umbonata (Hepp) Mudd	_	b	neutral to basic	sax
27	Lecidea sp.	_	c	-	_
28	Lecidea sp. 1	_	a	-	-
29	Lecidea sp. 2	_	a		_
230	Lecidella asema (Nyl.) Knoph & Hertel	-	d	neutral	sax

Table 3. Continued

	Current species name	Name used in study (if different)	Studies found	Substrate pH affinity	Substrate type
231	Lecidella carpathica Körb.	(if differency	b, c, d	generalist	sax
232	Lecidella euphorea (Flörke) Hertel	_	b, c, u b	neutral	
	- , ,	_		basic	cort, lig
33	Lecidella patavina (A. Massal.) Knoph & Leuckert Lecidella scabra (Taylor) Hertel & Leuckert	_	e	neutral	sax
34 35	Lecidella stigmatea (Ach.) Hertel & Leuckert	_	a a, b, c, d, e	neutral	sax
36	Lecidella wulfenii (Hepp) Körb.	_	a, b, c, u, e b	neutral	sax
30 37	Lecidoma demissum (Rutstr.) Gotth. Schneider &	_	b	acidic	gen terr
	Hertel				
38	Lepra amara (Ach.) Hafellner	Pertusaria amara (Ach.) Nyl.	e	acidic to neutral	cort
39	Lepra dactylina (Ach.) Hafellner	Pertusaria dactylina (Ach.) Nyl.	b	_	bry, terr
40	Lepra panyrga (Ach.) Hafellner	Pertusaria panyrga (Ach.) A. Massal.	b	_	bry, terr
41	Lepraria eburnea J.R. Laundon	_	18		
42	Lepraria finkii (B. de Lesd.) R.C. Harris	Lepraria aeruginosa (Wigg.) Sm.	e, 1	generalist	gen
43	Lepraria neglecta (Nyl.) Erichsen	Lepraria caesioalba (B. de Lesd.) J.R. Laundon, Lepraria zonata Brodo	e, 1	acidic to neutral	gen
44	Lepraria normandinoides Lendemer & R.C. Harris	_	e	_	gen
45	Lepraria sp. [†]	Lepraria incana (L.) Ach.	a, b	_	-
46	Leprocaulon textum (K. Knudsen, Elix & Lendemer) Lendemer & B.P. Hodk.	Lepraria texta K. Knudsen, Elix & Lendemer	d	_	sax
47	Leptochidium albociliatum (Desm.) M. Choisy	_	c, d, 3, 13	neutral	sax, terr
48	Leptogium austroamericanum (Malme) Dodge	_	1		cort
49	Leptogium chloromelum (Sw.) Nyl.	_	1		cort
50	Leptogium cyanescens (Rabenh.) Körb.	_	e	neutral	gen
51	Leptogium sp.	_	С		_
52	Lichenomphalia hudsoniana (H.S. Jenn.) Redhead et al.	Botrydina viridis (Ach.) Redhead & Kuyper	b	acidic	terr
53	Lichenostigma elongatum NavRos. & Hafellner	_	d	_	lich
54	Lichenostigma subradians Hafellner, Calatyud & NavRos.	-	d	_	lich
55	Lichenothelia spp.	_	17		_
56	Lobaria pulmonaria (L.) Hoffm.	_	e	neutral	cort
57	Megaspora verrucosa (Ach.) Arcadia & A. Nordin	Pachyospora verrucosa (Ach.) A. Massal.	b	neutral to basic	bry, terr
58	Melanelixia glabroides (Essl.) O. Blanco et al.		d		sax
59	Melanelixia subaurifera (Nyl.) O. Blanco et al.	Melanelia subaurifera (Nyl.) Essl.	a	neutral	cort, lig
60	Melanohalea elegantula (Zahlbr.) O. Blanco et al.		d	neutral	—
61	Miriquidica plumbeoatra (Vain.) A.J. Schwab &	Lecidea plumbeoatra Vain.	b	-	_
62	Rambold Miriquidica pycnocarpa (Körb.) Andreev	Lecidea pycnocarpa (Körb.) Ohlert	b	_	_
63	Miriquidica scotopholis (Tuck.) B.D. Ryan & Timdal	Lecanora scotopholis (Tuck.) Timdal		-	sax
64	Muellerella lichenicola (Sommerf. ex Fr.) D.	_	b	_	lich
65	Hawksw. Mycobilimbia berengeriana (A. Massal.) Hafellner & V. Wirth	Lecidea berengeriana (Massal.) Th.	b	basic	bry, terr
66	& V. Wirth Mycoblastus sanguinarius (L.) Norman	Fr. —	b	acidic	_
67	Myelochroa aurulenta (Tuck.) Elix & Hale	Parmelina aurulenta (Tuck.) Hale	1	_	cort, sax
68	Myelochroa galbina (Ach.) Elix & Hale	Parmelina galbina (Ach.) Hale	1	_	cort
69	Myelochroa obsessa (Ach.) Elix & Hale	Parmelina obsessa (Ach.) Hale	1	acidic to neutral	sax
70	Myriospora scabrida (Hedl. ex Magn.) K. Knudsen & Arcadia	` '	d	acidic	sax
71	Nephroma arcticum (L.) Torss.	_	b		gen
72	Nephroma bellum (Sprengel) Tuck.	_	1	acidic to neutral	gen
73	Nephroma parile (Ach.) Ach.	_	e	acidic to neutral	sax
74	Ochrolechia androgyna (Hoffm.) Amold	_	b	acidic	gen

Table 3. Continued

	Current species name	Name used in study (if different)	Studies found	Substrate pH affinity	Substrate type
275	Ochrolechia frigida (Sw.) Lynge	Ochrolechia lapuensis (Vain.) Räsänen	b	acidic	bry
276	Ochrolechia gyalectina (Nyl.) Zahlbr.	_	b	_	gen
277	Ochrolechia inaequatula (Nyl.) Zahlbr.	_	b	acidic	_
78	Ochrolechia upsaliensis (L.) A. Massal.	_	b	basic	bry, terr
279	Opegrapha rupestris Pers.	Opegrapha saxicola Ach.	a	generalist	lich
280	Pannaria rubiginosa (Thunb.) Delise	_	e	neutral	cort
81	Parmelia saxatilis (L.) Ach.	_	a, b, e, 1	acidic	sax
82	Parmelia sulcata Taylor	_	b, e, 1	acidic to neutral	cort
283	Parmeliopsis hyperopta (Ach.) Arnold	_	b	acidic	cort
284	Parmotrema crinitum (Ach.) M. Choisy	_	e	acidic	cort
285	Parmotrema hypoleucinum (B. Stein) Hale	_	1	acidic to neutral	cort
86	Parmotrema hypotropum (Nyl.) Hale	_	1	acidic to neutral	cort
87	Parmotrema perforatum (Jacq.) A. Massal.	_	1	_	cort
88	Parmotrema reticulatum (Taylor) Choisy	_	1	acidic to neutral	cort
89	Parmotrema subisidiosum (Mull. Arg.) Hale	_	1	_	cort
290	Peltigera aphthosa group [‡]	Peltigera aphthosa (L.) Willd.	b, 1	_	_
291	Peltigera canina group [‡]	Peltigera canina (L.) Willd.	b, 1	_	_
292	Peltigera didactyla (With.) J.R. Laundon	_	e	neutral	terr
293	Peltigera evansiana Gyelnik	_	1	_	bry, terr
294	Peltigera polydactylon (Necker) Hoffm.	Peltigera polydactyla (Necker) Hoffm.	b, 1	_	terr
295	Peltigera rufescens (Weiss) Humb.	_	e, 1	neutral to basic	terr
296	Peltigera scabrosa Th. Fr.	_	b	acidic	gen
297	Peltula bolanderi (Tuck.) Wetmore	_	c, d, 13, 17	generalist	sax
298	Peltula euploca (Ach.) Poelt ex Ozenda & Clauzade	_	d, 13, 17	neutral	sax
299	Peltula omphaliza (Nyl.) Wetmore	_	c	neutral	sax
300	Peltula zahlbruckneri (Hasse) Wetmore	_	7	acidic to neutral	_
301	Pertusaria octomela (Norman) Erichsen	_	b		bry, terr
302	Phaeophyscia adiastola (Essl.) Essl.	_	e, 1	_	gen
303	Phaeophyscia ciliata (Hoffm.) Moberg	_	1	acidic to neutral	cort
304	Phaeophyscia endococcina (Körb.) Moberg	_	b	neutral	_
305	Phaeophyscia orbicularis (Necker) Moberg	_	a	generalist	cort
306	Phaeophyscia pusilloides (Zahlbr.) Essl.	_	1	acidic to neutral	cort
307	Phaeophyscia rubropulchra (Degel.) Essl.	_	e	neutral	_
308	Phaeophyscia sciastra (Ach.) Moberg	_	a, e	neutral to basic	sax
309	Phylliscum demangeonii (Moug. & Mont.) Nyl.	_	7	acidic to neutral	sax
310	Physcia adscendens (Fr.) H. Olivier		a, c	generalist	gen
311	Physcia americana G. Merr.		1	_	cort, sax
312	Physcia biziana (A. Massal.) Zahlbr.		d	neutral	gen
313	Physcia caesia (Hoffm.) Hampe ex Fürnr.	_	a, b, e, 1	neutral to basic	sax
314	Physcia dimidiata (Arnold) Nyl.	_	d	neutral	sax
315	Physcia dubia (Hoffm.) Lettau	_	b, 13	generalist	sax
16	Physcia millegrana Degel.	-	1	_	cort
317	Physcia phaea (Tuck.) J.W. Thomson	_	13	neutral	sax
318	Physcia stellaris (L.) Nyl.	_	c, 1	neutral	cort
319	Physcia tenella (Scop.) DC.	_	a, e	generalist	gen
320	Physcia tribacia (Ach.) Nyl.	_	8, 13, 14	neutral	sax
321	Physconia americana Essl.	_	d	_	gen
322	Physconia californica Essl.	_	d	_	cort
323	Physconia enteroxantha (Nyl.) Poelt	_	d	neutral	gen

Table 3. Continued

	Current species name	Name used in study (if different)	Studies found	Substrate pH affinity	Substrate type
324	Physconia isidiigera (Zahlbr.) Essl.	Physconia grisea (Lam.) Poelt f. isidiigera (Zahlbr.) Thomson comb. nov.	c, 13	neutral	-
325	Physconia muscigena (Ach.) Poelt	_	b, d	neutral to basic	bry, terr
326	Physconia sp.	Physconia distorta (With.) J.R. Laundon [§]	С	neutral	cort
327	Placidium arboreum (Schwein. ex E. Michener) Lendemer	Dermatocarpon tuckermanii (Rav.) Zahlbr.	1	_	cort
328	Placidium lachneum (Ach.) B. de Lesd.	Catapyrenium lachneum (Ach.) R. Sant.	c, 1, 3	neutral to basic	bry, terr
329	Placidium pilosellum (Breuss) Breuss	_	5	neutral to basic	bry, terr
30	Placidium squamulosum (Ach.) Breuss	_	e, 5	basic	bry, terr
31	Placopyrenium stanfordii (Herre) K. Knudsen	_	d	generalist	sax
32	Placynthiella icmalea (Ach.) Coppins & P. James	_	e	acidic	terr
333	Placynthiella uliginosa (Schrad.) Coppins & P. James	_	e	acidic	terr
34	Placynthium nigrum (Hudson) Gray	_	b, c	neutral to basic	sax
35	Placynthium sp.	_	a	-	
36	Platismatia glauca (L.) W.L. Culb. & C.F. Culb.	_	b, 1	-	gen
37	Polyblastia cupularis A. Massal.	_	b	neutral to basic	sax
338	Polyblastia hyperborea Th. Fr.	_	b		sax
339	Polyblastia sp.	_	a	-	_
340	Polycauliona bolacina (Tuck.) Arup, Frödén & Søchting	Caloplaca bolacina (Tuck.) Herre	13, 17	acidic to neutral	sax
841	Polycauliona candelaria (L.) Frödén, Arup, & Søchting	Xanthoria candelaria (L.) Th. Fr.	a	generalist	cort, sax
342	Polycauliona ignea (Arup) Arup, Frödén & Søchting	Caloplaca ignea Arup.	d, 17	_	sax
343	Polycauliona impolita (Arup) Arup, Frödén & Søchting	Caloplaca impolita Arup.	d	_	sax
344	Polycauliona luteominia var. bolanderi (Tuck.) Arup, Frödén & Søchting	Caloplaca bolanderi (Tuck.) H. Magn.	c, 17	generalist	sax
345	Polycauliona luteominia (Tuck.) Arup, Frödén & Søchting var. luteominia	Caloplaca laeta H. Magn.	С	generalist	sax
346	Polycauliona verruculifera (Vain.) Arup, Frödén & Søchting	Caloplaca verruculifera (Vain.) Zahlbr.	a	generalist	gen
347	Polyozosia albescens (Hoffm.) S.Y. Kondr., Lőkös & Farkas	Lecanora albescens (Hoffm.) Flörke	a	neutral to basic	sax
348	Polyozosia dispersa (Pers.) S.Y. Kondr., Lőkös & Farkas	Lecanora dispersa (Pers.) Röhl.	e, 16	generalist	gen
349	Polyozosia hagenii (Ach.) S.Y. Kondr., Lőkös & Farkas	Lecanora hagenii (Ach.) Ach.	b	neutral to basic	gen
350	Porocyphus coccodes (Flotow) Körb.	_	e	neutral	sax
851	Porpidia albocaerulescens (Wulfen) Hertel & Knoph	Huilia albocoerulescens (Wulf.) Hertel	1	acidic	sax
352	Porpidia cinereoatra (Ach.) Hertel & Knoph	_	b	neutral	sax
53	Porpidia crustulata (Ach.) Hertel & Knoph	Huilia crustulata (Ach.) Hertel.	b, 1	acidic	sax
54	Porpidia macrocarpa (DC.) Hertel & A.J. Schwab	_ ` ` '	b	acidic	sax
55	Porpidia subsimplex (H. Magn.) Fryday	_	e	acidic	sax
56	Porpidia tuberculosa (Sm.) Hertel & Knoph	_	b	acidic to neutral	gen
357	Protopannaria pezizoides (Weber) P. M Jørg. & S. Ekman	Pannaria pezizoides (Weber) Trevis.		neutral	bry, terr
358	Protoparmelia badia (Hoffm.) Hafellner	_	9	acidic to neutral	sax
359	Protoparmeliopsis garovaglii (Körb.) Arup, Zhao Xin & Lumbsch	Lecanora garovaglii (Körb.) Zahlbr.		neutral	sax
360	Protoparmeliopsis muralis (Schreb.) M. Choisy	Lecanora muralis (Schreb.) Rabenh.	d, 1, 13,17	generalist	sax

Table 3. Continued

	Current species name	Name used in study (if different)	Studies found	Substrate pH affinity	Substrate type
361	Protoparmeliopsis pinguis (Tuck.) S. Y. Kondr.	Lecanora pinguis Tuck.	8	_	sax
362	Psora globifera (Ach.) A. Massal.	_	c	neutral	terr
63	Psora icterica (Mont.) Müll. Arg.	_	1, 12	_	terr
64	Psora pacifica Timdal		7, 13	_	terr
65	Psoroma hypnorum (Vahl) Gray		b	acidic	bry, terr
66	Psorula rufonigra (Tuck.) Gotth. Schneider	_	c, e, 1	neutral	lich
67	Punctelia rudecta (Ach.) Krog	Parmelia rudecta Ach.	1		_
68	Punctelia stictica (Delise ex Duby) Krog	_	14	acidic to neutral	sax
69	Pycnothelia papillaria (Ehrh.) Duf.	_	1	acidic	bry, terr
370	Pyrenocarpon thelostomum (Ach. ex J. Harriman) Coppins & Aptroot	_	e	_	_
71	Pyrenopsis phaeococca Tuck.	_	c	_	sax
72	Ramalina farinacea (L.) Ach.	_	a	neutral	cort
73	Ramonia extensa Lendemer, K. Knudsen & Coppins $^{\parallel}$	Ramonia gyalectiformis (Zahlbr.) Vězda	c, 15	_	sax
74	Rhizocarpon bolanderi (Tuck.) Herre	_	c, d	_	sax
75	Rhizocarpon cinereovirens (Müll. Arg.) Vain.	_	b	acidic	sax
76	Rhizocarpon disporum (Nägeli ex Hepp) Müll. Arg.	_	a, e	neutral	sax
77	Rhizocarpon geminatum Körb.	_	e	neutral	sax
78	Rhizocarpon geographicum (L.) DC.	_	b, c	acidic to neutral	sax
79	Rhizocarpon grande (Flörke ex Flotow) Arnold	_	c	acidic	sax
80	Rhizocarpon hochstetteri (Körb.) Vain.	_	b	acidic to neutral	sax
81	Rhizocarpon reductum Th. Fr.	_	e	acidic to neutral	sax
82	Rhizocarpon superficiale (Schaer.) Vain.	_	d	acidic	sax
83	Rhizocarpon viridiatrum (Wulfen) Körb.	_	c, d	neutral	sax
84	Rhizoplaca chrysoleuca (Sm.) Zopf	_	c	neutral	sax
85	Rhizoplaca glaucophana (Nyl. ex Hasse) W.A. Weber	_	d	_	sax
86	Rhizoplaca melanophthalma (DC.) Leuckert & Poelt	_	c, d	neutral	sax
87	Rinodina confragosa (Ach.) Körb.	_	d	acidic to neutral	sax
88	Rinodina conradii Körb.	_	b	neutral	gen
89	Rinodina gennarii Bagl.	_	a	neutral	sax
90	Rinodina milvina (Wahlenb.) Th. Fr.	_	d	neutral	sax
91	Rinodina mniaroea (Ach.) Körb.	_	b	_	bry, terr
92	Rinodina mniaroeiza (Nyl.) Arnold	_	b	_	-
93	Rinodina rinodinoides (Anzi) H. Mayerh. & Scheid.	_	17	acidic to neutral	sax
94	Rinodina straussii J. Steiner	_	d	basic	sax
95	Rinodina tephraspis (Tuck.) Herre	_	c	acidic	sax
96	Rufoplaca oxfordensis (Fink) Arup, Søchting & Frödén	Caloplaca oxfordensis Fink in Hedr.	1	_	sax
97	Rusavskia elegans (Link) S.Y. Kondr. & Kärnefelt	Xanthoria elegans (Link) Th. Fr.	b, e	basic	sax
98	Rusavskia sorediata (Vain.) S.Y. Kondr. & Kärnefelt	Xanthoria sorediata (Vain.) Poelt	b	neutral to basic	sax
99	Scoliciosporum umbrinum (Ach.) Arnold	_	b, e, 1	acidic to neutral	sax
00	Scytinium californicum (Tuck.) Otálora, P.M. Jørg. & Wedin	Leptogium californicum Tuck.	c, d	generalist	sax
01	Scytinium lichenoides (L.) Otálora, P.M. Jørg. & Wedin	Leptogium lichenoides (L.) Zahlbr.	d	neutral to basic	gen
102	Scytinium palmatum (Hudson) Gray	Leptogium corniculatum (Hoffm.) Minks [=Leptogium palmatum (Huds.) Mont.]	a, c	neutral	sax, terr
103	Scytinium plicatile (Ach.) Otálora, P.M. Jørg. & Wedin	Leptogium plicatile (Ach.) Leight.	a	neutral to basic	sax

Table 3. Continued

	Current species name	Name used in study (if different)	Studies found	Substrate pH affinity	Substrate type
404	Scytinium rivale (Tuck.) Otálora, P.M. Jørg. & Wedin	Leptogium rivale Tuck.	a	_	sax
105	Scytinium subtile (Schrad.) Otálora, P.M. Jørg. & Wedin	Leptogium minutissimum (Flörke) Th. Fr.	a	-	terr
106	Scytinium tenuissimum (Dickson) Otálora, P.M. Jørg. & Wedin	Leptogium tenuissimum (Dickson) Th. Fr.	a, d	neutral	cort, terr
107	Solenopsora crenata (Herre) Zahlbr.	_	9	-	sax, terr
80	Sphaerophorus globosus (Hudson) Vain.	_	b	acidic	bry, terr
09	Spilonema revertens Nyl.	_	a, e	_	sax
10	Squamulea squamosa (B. de Lesd.) Arup, Søchting & Frödén	Caloplaca squamosa (B. de Lesd.) Zahlbr.	c	generalist	sax
11	Squamulea subsoluta (Nyl.) Arup, Søchting & Frödén	Caloplaca subsoluta (Nyl.) Zahlbr.	d	generalist	sax
12	Staurothele areolata (Ach.) Lettau	_	d	neutral to basic	sax
13	Staurothele elenkinii Oxner	_	d		sax
14	Staurothele rufa (A. Massal.) Zschacke	_	a	neutral to basic	sax
15	Stereocaulon alpinum Laurer ex Funck	_	b	acidic	terr
16	Stereocaulon glareosum (Savicz) H. Magn.	_	b	acidic	terr
17	Stereocaulon glaucescens Tuck.	_	b, e		terr
18	Stereocaulon incrustatum Flörke	_	b	acidic	terr
19	Stereocaulon paschale (L.) Hoffm.	_	b	_	terr
120	Stereocaulon saxatile H. Magn.	_	1	_	sax
121	Stereocaulon subcoralloides (Nyl.) Nyl.	_	b		sax
122	Stereocaulon tomentosum Fr.	_	b, 1	acidic	sax
23	Stigmidium marinum (Deakin) Swinscow	_	a	_	lich
24	Stigmidium squamariae (B. de Lesd.) Cl. Roux & Triebel	_	d	_	lich
25	Tephromela atra (Hudson) Hafellner	_	b, c	neutral	sax
26	Tetramelas papillatus (Sommerf.) Kalb	Buellia papillata (Sommerf.) Tuck.	b	neutral to basic	bry, terr
127	Thalloidima ioen (Herre) S. Ekman & Timdal	Toninia submexicana de Lesdain	2, 4	_	sax, terr
128	Thamnolia vermicularis (Sw.) Schaer.	Thamnolia subuliformis (Ehrh.) W.L. Culb.	b	_	terr
129	Thelidium sp.	_	c	-	sax
130	Thelomma mammosum (Hepp.) A. Massal.	_	13, 14	-	sax
431	Tingiopsidium sonomense (Tuck.) Hafellner & T. Sprib.	Koerberia sonomensis (Tuck.) Henssen	d	neutral	sax
132	Toninia squalida (Ach.) A. Massal.		c	neutral	sax, terr
433	Toniniopsis aromatica (Sm.) Kistenich et al.	Toninia aromatica (Turner) A. Massal.	С	_	sax, terr
434	Trapelia involuta (Taylor) Hert.	_	1	acidic to neutral	sax
135	Trapelia sp.	_	1	_	
136	Trapeliopsis granulosa (Hoffm.) Lumbsch	_	b, e	acidic	gen
137	Tremolecia atrata (Ach.) Hertel	_	b	acidic	sax
438	Tuckermannopsis ciliaris (Ach.) Gyelnik	Cetraria ciliaris Ach.	1	_	gen
139	Umbilicaria lambii Imshaug	_	10	_	sax
140	Umbilicaria phaea Tuck.	_	c, d, 14	acidic to neutral	sax
441	Umbilicaria polaris (Schol.) Zahlbr.	Umbilicaria krascheninnikovii (Savicz) Zahlbr.	С	acidic to neutral	sax
142	Umbilicaria rigida (Hoffm.)	_	10	acidic	sax
143	Usnea flavocardia Räsänen	Usnea wirthii P. Clerc	14	acidic	cort, sax
144	Vahliella leucophaea (Vahl) P.M. Jørg.	Pannaria leucophaea (Vahl.) P. M. Jørg.	b, c	neutral	sax
145	Verrucaria aethiobola Wahlenb.	_	c	generalist	sax
146	Verrucaria ceuthocarpa Wahlenb.	_	a	acidic	sax
147	Verrucaria degelii R. Sant.	_	a	_	sax
448	Verrucaria erichsenii Zschacke	_	a	acidic	sax

Table 3. Continued

	Current species name	Name used in study (if different)	Studies found	Substrate pH affinity	Substrate type
449	Verrucaria halizoa Leighton	_	a	_	sax
450	Verrucaria margacea (Wahlenb.) Wahlenb.	_	С	neutral	sax
451	Verrucaria muralis Ach.	_	С	basic	sax
452	Verrucaria nigrescens Pers.	_	c, 1	neutral to basic	sax
453	Verrucaria sandstedei B. de Lesd.	_	a	_	_
454	Verrucaria sphaerospora Anzi	-	d	neutral to basic	sax
455	Verrucaria viridula (Schrad.) Ach.	_	c, 1	neutral to basic	sax
456	Verrucaria sp. 9	_	a	_	_
457	Verrucaria sp. 10	_	a	_	_
458	Vulpicida juniperina (L.) JE. Mattsson & M.J. Lai	Cetraria tilesii Ach.	b	basic	bry, terr
459	Wahlenbergiella mucosa (Wahlenb.) Gueidan & Thüs	Verrucaria mucosa Wahlenb.	a	_	sax
460	${\it Wahlenbergiella\ striatula\ (Wahlenb.)\ Gueidan\ \&\ Th\"{\it us}}$	Verrucaria striatula Wahlenb. ex Ach.	a	_	sax
461	Xanthocarpia crenulatella (Nyl.) Frödén, Arup & Søchting	Caloplaca crenulatella (Nyl.) H. Olivier	d	basic	sax
462	Xanthomendoza fallax (Hepp ex Arnold) Søchting, Kärnefelt & S.Y. Kondr.	_	d	neutral	cort
463	Xanthoparmelia conspersa (Ach.) Hale	_	1	acidic to neutral	sax
464	Xanthoparmelia cumberlandia (Gyelnik) Hale	_	c, e, 1	acidic to neutral	sax, terr
465	Xanthoparmelia hypomelaena (Hale) Hale		1	acidic to neutral	sax
466	Xanthoparmelia loxodes (Nyl.) O. Blanco et al.		d	generalist	sax
467	Xanthoparmelia mexicana (Gyelnik) Hale		d, 14	acidic to neutral	sax, terr
468	Xanthoparmelia plittii (Gyelnik) Hale	_	e, 1	acidic to neutral	sax
469	Xanthoparmelia schmidtii Hale	_	3	_	sax
470	Xanthoparmelia verruculifera (Nyl.) O. Blanco et al.	Neofuscelia verruculifera (Nyl.) Essl.	d, 14	generalist	sax
471	Xanthoparmelia viriduloumbrina (Gyelnik) Lendemer	_	e	_	-
472	Xanthoparmelia sp.	_	13	_	-
473	Xanthoparmelia sp. 1	Xanthoparmelia taractica (Kremplh.) Hale [¶]	1	_	sax, terr
474	Xanthoparmelia sp. 2	Xanthoparmelia tasmanica (Hook. F. & Taylor) Hale**	1	-	_
475	Xanthoria parietina (L.) Th. Fr.	_	e	generalist	gen
476	Xanthoria sp.	_	c	_	

Note: Alternative species names used in the published studies and articles are given. Key to studies: a, Ryan 1988a; b, Sirois et al. 1988; c, Sigal 1989; d, Rajakaruna et al. 2012; e, Medeiros et al. 2014. Key to articles and floras: 1, Reed 1986; 2, Bratt and Wright 1995; 3, Doell and Wright 1996; 4, Magney 1999; 5, Breuss and Bratt 2000; 6, Jørgensen 2000; 7, Robertson and Robertson 2000; 8, Baltzo 2001; 9, Robertson and Robertson 2001; 10, Peterson 2003; 11, Lendemer 2004; 12, Lendemer 2008; 13, Robertson and Robertson 2008; 14, Doell et al. 2009; 15, Lendemer et al. 2009; 16, Benson et al. 2012; 17, Benson 2016; 18, McMullin et al. 2017; 19, Tucker 2017. Substrate type for lichens is given for species considered to mostly occur on one or more of the following: bryophytes, bry—bryicolous; rocks, sax—saxicolous; soil, terr-terricolous; wood, lig-lignicolous; bark, cort-corticolous. Substrate generalists known to occur on multiple substrates without clear specificity are denoted with "gen", and taxa considered lichenicolous (<mark>Lawrey and Diederich 2018</mark>) are denoted with "lich".

pH affinity category due to insufficient information in the literature. Approximately half (224; 51%) were designated a pH affinity category of acidic, acidic to neutral, or neutral, and the remaining taxa (87; 20%) had a pH affinity of generalist, basic, or neutral to basic (Table 4).

The largest proportion of lichen taxa recorded are saxicolous (186; 43%), with terricolous taxa (61; 14%) next most frequent, and only three bryicolous taxa (<1%). Forty-one lichens were classified as either saxicolous and terricolous (13; 3%) or terricolous and bryicolous (28; 6%). Forty-six

^{*}Sirois et al. (1988) report Biatora vernalis but this is more likely Biatora subduplex, a species that was typically lumped with B. vernalis at the time of publication of the

[†]This includes report of Lepraria incana from Sirois et al. (1988). Lepraria incana was the name previously used for several species now recognized as distinct taxa.

[‡]Peltigera aphthosa and P. canina were names previously used for several species that are now recognized as distinct taxa.

[§]Physconia distorta is now known not to occur in North America.

The two study citations (Lendemer et al. 2009; Sigal 1989) are likely based on the same specimen and represent a single taxon. The collection of Ramonia gyalectiformis from Complexion Springs mentioned in Sigal (1989) is presumed to be the same as the type specimen for the later described R. extensa.

Specimens identified as Xanthoparmelia taractica from eastern North America are considered likely to be misidentifications of X. viriduloumbrina (Esslinger 2019).

^{**}Records of X. tasmanica in North America are likely X. hypofusca (Esslinger 2019).

Table 4. North American ultramafic lichens categorized by substrate pH affinity.

pH affinity category	Number of taxa	Percentage of total
Acidic	85	19.5%
Acidic to neutral	70	16%
Neutral	69	16%
Neutral to basic	40	9%
Basic	15	3.5%
Generalist	32	7%
N/A (unknown)	126	29%
Total:	437	100%

Note: 39 taxa not identified to the species level are not included.

(11%) predominantly epiphytic (i.e., corticolous or lignicolous [growing on exposed wood]) taxa were identified, as well as twelve (3%) lichenicolous taxa and 36 (8%) substrate generalists. Thirty-one taxa were not assigned a substrate type.

Species distributions

Of the 437 taxa identified to species, 52 are apparently restricted to North America (Table 5), with the remaining taxa more widely distributed. The nine species recorded in three or more of the five published studies focusing on lichens of ultramafic substrates are globally widespread, with most being cosmopolitan or nearly so (Table 6).

Discussion

Substrate affinities of ultramafic lichens of North America

Our review of the literature on lichens of ultramafic substrates shows a high proportion of highly to somewhat acidophytic taxa, with a much smaller proportion of basiphytic taxa (Table 4). Taxa with a neutral pH affinity, as well as generalists tolerant of a wide range of pH levels, were also well-represented. This is somewhat consistent with the mix of acidophytic and basiphytic taxa that have often been observed on ultramafic substrates worldwide (Favero-Longo et al. 2004). It is important to note that basiphytic and acidophytic taxa co-occurred within the same sites for each of the five ultramafic lichen studies reviewed. In other words, the occurrence of a small number of weakly to strongly basiphytic taxa was a consistent feature of the sites surveyed in the reviewed studies, and not a result of a small number of sites with a highly basiphytic component. The pattern of consistent co-occurrence is better explained by the observation that basiphytic species are often found on the undersides of overhanging rock surfaces of ultramafic outcrops, rather than exposed surfaces where acidophytic species tend to predominate. This observed pattern could possibly be a result of accumulated nutrients, including bases, as well as higher calcium concentrations, in these sheltered microhabitats (Miller et al. 2005).

Species richness and diversity in ultramafic lichen assemblages

Measurements of species richness and diversity on ultramafic substrates in North America do not reveal any clear pattern of high or low diversity relative to nonultramafic substrates. In the three studies comparing ultramafic and nonultramafic lichen assemblages, two (Sirois et al. 1988; Rajakaruna et al. 2012) found a higher number of taxa on ultramafic substrates. However, in both studies, the authors noted potential confounding factors. In one study, much of the area of the nonultramafic sites had been disturbed within the last 62 years, and thus harbored relatively young lichen communities compared to the undisturbed ultramafic sites (Rajakaruna et al. 2012). In the second study, the higher total number of taxa found on serpentinized peridotite - 157 taxa compared to 121 on mafic amphibolite — could be partly a result of the fact that among the 145 study plots, only 15 sampled amphibolite (Sirois et al. 1988). The third comparative study reported similar numbers of taxa between Pine Hill, Little Deer Isle, Maine, an ultramafic serpentinized peridotite site (82 taxa), and the nearby volcanic-origin, metal enriched rocks of Callahan Mine (84 taxa; Medeiros et al. 2014). However, comparison of species richness and diversity between sites was not an express objective of this study; the sampling area and survey effort were different between sites, and surveys were carried out by different workers (Harris et al. 2007; Medeiros et al. 2014), making comparisons of species richness between ultramafic and nonultramafic substrates uninformative.

Globally, published accounts of lichens of ultramafic substrates have come to a range of conclusions regarding species diversity of ultramafic substrates in comparison to other rock types. In their review of lichens of metal-enriched environments, Purvis and Halls (1996) state that ultramafic substrates tend to have relatively low lichen species richness compared to other rock types. Other studies present evidence of ultramafic substrates having comparable, or even higher species richness than adjacent rock types (Favero-Longo and Piervittori 2009; Paukov 2009). Thus, there does not appear to be broad agreement on the species diversity of ultramafic substrates compared to nonultramafic substrates, which is also noted by Favero-Longo et al. (2004, 2018).

Composition of ultramafic lichen assemblages

Comparisons of lichen assemblages from the five studies reviewed here show a remarkably low overlap in species composition among ultramafic study areas (Table 3). This is at least partly attributable to the large differences in abiotic conditions present at the different geographic regions covered by the studies (Table 1 and Fig. 1). As one example, the New Idria serpentinite mass (CA, USA) sampled by Rajakaruna et al. (2012) and Little Deer Isle (ME, USA; Harris et al. 2007) differ in many respects, including mean annual temperature, elevation, precipitation, coastal proximity, and latitude. Thus, it is unsurprising that the two surveys found only five lichen species common to both study areas, which is 3% of the total number of taxa (165) inventoried from ultramafic substrates across both studies. Perhaps more interestingly, comparisons

Table 5. Lichen taxa apparently restricted to North America from lichens recorded on ultramafic substrates in North America in the published literature.

Species name	Studies found	Distribution within North America
Aspicilia confusa	d	Primarily southern and central parts of California
Aspicilia cuprea	d	Primarily southern and central parts of California
Aspicilia phaea	d	Southwestern USA, most records from southern and central California and the Great Basin (Nevada, Utah)
Aspicilia praecrenata	d	Primarily central and southern California: Los Angeles, San Luis Obispo, and San Benito counties, and the Channel Islands
Blennothallia fecunda	a	Coastlines of northwest Washington, British Columbia, and Alaska
Buellia lepidastra	e	Across USA
Buellia nashii	d	Primarily southwestern USA, Baja California, and mainland Mexico
Caloplaca albovariegata	d	Primarily western North America
Candelariella citrina	d	Western North America, northern Canada, Alaska, and Greenland
Cladonia apodocarpa*	1	Eastern North America
Cladonia atlantica	1	Eastern North America
Cladonia cristatella	e, 1	North America (primarily eastern)
Cladonia cylindrica	1	North America (primarily eastern)
Cladonia dimorphoclada	e, 1	Eastern North America
Cladonia mateocyatha	1	North America (primarily eastern)
Cladonia petrophila	1	Eastern USA and Canada
Clavascidium lacinulatum var. atrans	11	Western and central North America, with disjunct eastern populations.
Dermatocarpon americanum	13	North America from Canada to Mexico, most records from southwestern USA and northern Mexico
Dimelaena thysanota	d, 17	Western North America from southern Canada to northern Mexico
ecanora mellea	17	Western North America, primarily Canada
ecanora placidensis	b	Northeastern USA
Lecanora sierrae	d	Western USA (mainly in the Sierra Nevada) and Baja California
Lecidea brunneofusca	b	Northeastern USA and southeastern Canada
Lecidea cyrtidia	1	North America (primarily eastern)
Lepraria normandinoides	e	North America (primarily eastern)
Leprocaulon textum	d	Central and southern California
Melanelixia glabroides	d	Western USA and Baja California, Mexico
Miriquidica scotopholis	c, 17	Western North America, primarily California and Baja California
Myelochroa obsessa	1	North America (primarily eastern)
Physcia americana [†]	1	Mainly eastern USA
Physcia millegrana	1	North America (primarily eastern)
Physconia californica	d	Western North America, southern Oregon to Baja California
Placidium arboreum	1	USA (primarily eastern)
Polycauliona bolacina	13, 17	North America (primarily eastern)
Polycauliona ignea	d, 17	Northern California to southern Baja California
Polycauliona impolita	d	California, Baja California, and mainland Mexico (Sinaloa, Sonora, and Chihuahua provinces)
Polycauliona luteominia var. bolanderi	c, 17	Coastal, western North America south to northern Baja California
Polycauliona luteominia var. luteominia	c	Western North America (mainly coastal) and Caribbean islands
Porpidia subsimplex	e	Eastern North America
Protoparmeliopsis pinguis	8	Western North America from southern Canada to northern Mexico primarily coastal
Psora pacifica	7, 13	Northern California to central Baja California, primarily coastal
Pyrenopsis phaeococca	c	North America, primarily northeastern USA and Great Lakes region
Ramonia extensa	c, 15	Known only from type locality: Complexion Springs, California on serpentine rock
Rhizoplaca glaucophana	d	California and Baja California
Rinodina straussii	d	Western North America, mainly western USA, but also Canada

Table 5. Continued

Species name	Studies found	Distribution within North America
Scytinium californicum	c, d	Mainly western North America from Alaska to Mexico
Scytinium rivale	a	Mainly western North America
Solenopsora crenata	9	Central and southern California, coastal
Staurothele elenkinii	d	Mainly western North America
Stereocaulon glaucescens	b, e	Eastern North America
Umbilicaria lambii	10	Western North America, from Canada to California
Xanthoparmelia schmidtii	3	Southwestern USA

Note: For key to studies, see Table 3.

Table 6. Lichens recorded in more than three studies of ultramafic lichens in North America.

Species	Studies found	pH affinity	Global distribution
Candelariella aurella	a, d, e	Basic	Cosmopolitan
Candelariella vitellina	b, c, d, e	Acidic to neutral	Cosmopolitan
Cladonia pyxidata	b, c, e	Acidic to neutral	Cosmopolitan
Lecanora polytropa	b, c, e	Acidic to neutral	Cosmopolitan
Lecidea tessellata	b, c, d	Neutral	North America and Europe
Lecidella carpathica	b, c, d	Generalist	Widespread, mainly temperate
Lecidella stigmatea	a, b, c, d, e	Neutral	Widespread, mainly temperate
Parmelia saxatilis	a, b, e	Acidic	Widespread, mainly temperate and southern boreal regions
Physcia caesia	a, b, e	Neutral to basic	Widely distributed; arctic, boreal, and temperate zones

Note: Key to studies: a, Ryan 1988a; b, Sirois et al. 1988; c, Sigal 1989; d, Rajakaruna et al. 2012; e, Medeiros et al. 2014.

of lichen species inventories on ultramafic substrates within similar regions also reveal large differences in lichen species assemblages at regional and local scales. Rajakaruna et al. (2012) found substantial heterogeneity in lichen species composition (recorded as presence-only data) between five ultramafic sites in the New Idria serpentinite mass in San Benito County, CA, USA. Fifty-four of the 79 species (68%) found on ultramafic substrates were recorded at only one of the five sampled sites, which all occur within a 5 km radius. In a study of the serpentine lichen biotas of the Northern and Southern Coast Ranges in California, Sigal (1989) conducted inventories of five ultramafic outcrops distributed along a latitudinal gradient (Fig. 1). The study recorded 76 species across the five sites but only two, Candelariella vitellina (Hoffm.) Müll. Arg. and Circinaria caesiocinerea (Nyl. ex Malbr.) A. Nordin et al. were found at every site. Three additional species were found at four of the five sites — Acarospora fuscata (Schrad.) Arnold, Lecanora polytropa (Ehrh.) Rabenh., and Leptochidium albociliatum (Desm.) M. Choisy — and ten species were found at three of five sites: Buellia badia (Fr.) A. Massal., Candelaria concolor (Dickson) Stein, Catillaria lenticularis (Ach.) Th. Fr., Cladonia coniocraea (Flörke) Sprengel, Dermatocarpon miniatum (L.) W. Mann, Lecidella carpathica Körb., Leptogium cyanescens (Rabenh.) Körb., Psorula rufonigra (Tuck.) Gotth. Schneider, ¹ Vahliella leucophaea (Vahl) P.M. Jørg., and Xanthoparmelia cumberlandia (Gyelnik) Hale. These species are mostly widespread, all occurring on multiple continents (CNALH 2021), and they vary in their pH affinity from acidophytic to basiphytic, with one species, *Lecidella carpathica*, a substrate pH generalist. Thirty-nine of the 76 species (51%) were observed at only one locality, and the remaining 22 were found at two localities (29%).

The observed pattern of high species turnover at varying spatial scales in ultramafic lichen communities in North America agrees with findings of low compositional similarity at the global scale (Favero-Longo et al. 2004). An azonal distribution of lichen species, where ultramafic lichen assemblage composition is similar across latitudinal, climatic, and other abiotic gradients, would suggest a strong, overriding effect of substrate on lichen assemblage composition, and this is not demonstrated in studies of ultramafic lichen assemblages in North America or elsewhere.

The patterns of species composition observed in ultramafic lichen assemblages appear, at first, relatively unremarkable, especially in comparison to ultramafic vascular plant assemblages (Kruckeberg 2002; Galey et al. 2017). However, it is important to note that, to date, large-scale, lithology-specific reviews of lichen biotas have only been conducted for lichens of ultramafic substrates (Favero-Longo et al. 2004; Favero-Longo et al. 2018), with no analogous studies of other rock types. This makes it difficult to put reviews of ultramafic lichen biotas into a broader context (Favero-Longo et al. 2018). Furthermore, comparative lichen floristic surveys of ultramafic and nonultramafic habitats at regional and local scales are uncommon (e.g., Favero-Longo and Piervittori 2009; Paukov and Trapeznikova 2005), and typically utilize species

^{*}C. apodocarpa has unverified records from Colombia.

[†]P. americana is included here, although it has two records from the Hawaiian Islands, which are normally considered part of Oceania.

¹ Psorula rufonigra is an obligate parasite on the lichen Spilonema revertens Nyl. We suspect that S. revertens was present in the study sites but was overlooked due to its small stature and similar appearance to free living cyanobacteria species.

inventory methods as opposed to quantitative sampling methods, making identification of characteristic or dominant species difficult. However, the comparative studies that have been conducted, including three North American studies reviewed here (Sirois et al. 1988; Rajakaruna et al. 2012; Medeiros et al. 2014), reveal substantial differentiation between ultramafic and nearby nonultramafic lichen biotas. Sirois et al. (1988) reported markedly different lichen assemblages on amphibolite, a mafic rock, and ultramafic partially serpentinized peridotite, which occur adjacent to each other on Mont Albert, QC, Canada. Rajakaruna et al. (2012) found statistically significant differences in lichen assemblages of ultramafic, silicacarbonate, and sedimentary shale and sandstone. Medeiros et al. (2014) also reported differences between inventories from nearby ultramafic and nonultramafic areas. The differentiation across studies between ultramafic and nonultramafic substrates suggests a substrate effect, though more research is clearly needed.

Ultramafic affinity, distributions, and disjunct populations

There is some direct and indirect evidence that ultramafic rocks and soils are important habitats for certain lichen taxa. These include taxa that appear to have some level of affinity for ultramafic substrates, as well as taxa with disjunct populations found on ultramafic substrates. Due to their inhospitability to vascular plants, the microclimates and microhabitats on ultramafic rocks and soils are often dramatically different from nearby habitats of nonultramafic substrates (Brady et al. 2005; Cacho and Strauss 2014). This may lead to regionally unique microhabitats that support rare or endemic taxa, as well as disjunct populations restricted to these microhabitats. Lendemer (2008) describes eastern disjunct populations of Psora icterica (Mont.) Müll. Arg. in serpentine barrens in Maryland and Pennsylvania. Psora icterica was subsequently found in similarly open granite flat rock microhabitats in the Piedmont Plateau in Alabama (Hansen and Goertzen 2012). The authors suggested that the relatively open, arid microhabitats offered by serpentine barrens and granite flat rock environments shape the disjunct distribution of P. icterica, which was previously considered restricted to arid regions of western and central North America. Clavascidium lacinulatum var. atrans (Breuss) M. Prieto has a similar disjunct distribution to P. icterica and has been recorded co-occurring with the species on serpentine barrens in Maryland (Lendemer 2004). In the western USA, Solenopsora crenata (Herre) Zahlbr., a somewhat rare lichen apparently endemic to coastal California, has been characterized as fairly common on shaded serpentine in the northern San Francisco Bay Area (Robertson and Robertson 2001). Solenopsora crenata is described as occurring in coastal, open habitats in central and southern California and the Channel Islands (Ryan and Timdal 2002). As open coastal habitats become less common along the increasingly mesic central and northern coast of California, it seems plausible that ultramafic outcrops provide pockets of habitat for this species where it would otherwise not occur. These examples suggest that ultramafic

habitats, which are often relatively open and arid due to a paucity of vascular plant cover, may serve as important refugia for various lichen taxa that would otherwise be locally or regionally absent. Other lichen species may have an affinity for the properties of ultramafic substrates themselves. One such species is Fuscopannaria thiersii P.M. Jørg., which is described as occurring on moist rock surfaces that are often iron-rich and is considered possibly a specialist of heavy metal-rich or ultrabasic (i.e., serpentinite) rocks (Jørgensen 2000). Lastly, Ramonia extensa Lendemer, K. Knudsen & Coppins may be a specialist on ultramafic substrates, though classifying it as such at this time is untenable since currently it is only known from its type locality in Lake County, California (Lendemer et al. 2009). We suggest that there are likely numerous examples of lichen taxa with significant degrees of affinity for ultramafic substrates in North America. Furthermore, although there is scant evidence of ultramafic endemism for lichens in North America or elsewhere, endemism of infraspecific taxa and distinct genotypes, as well as ultramafic habitats shaping regional and local species distributions, are research topics that remain largely unexplored.

Future research directions

Our review highlights the meaningful work done characterizing taxonomic diversity of lichens of ultramafic rocks and soils in North America, providing further evidence for trends identified by earlier global accounts (Favero-Longo et al. 2004, 2018), while adding an increased focus on the North American continent. However, this review also reveals gaps in the state of knowledge of lichens on ultramafic substrates in North America, including gaps in survey coverage. Lichen biotas of large areas of ultramafic rocks and soils remain relatively unknown with no published data. These areas include orogenic ultramafics in boreal parts of Alaska and Newfoundland, as well as British Columbia, Washington, Oregon, and Baja California. Additionally, more localized areas of intracratonic (i.e., within the stable interior portion of the continent) ultramafic rocks occur in the central USA, and accounts of the lichen biotas of these are absent from the published literature. These include ultramafics of the Stillwater Complex in Montana, as well as other intracratonic complexes in Wyoming and Minnesota (Fig. 1; Krevor et al. 2009). While published data for these areas appear to be scant to nonexistent, it is important to note that much untapped data are available from herbarium collections. Review of herbarium records was beyond the scope of this review but would provide a valuable avenue of research for future studies of lichens of ultramafic substrates.

In addition to filling geographical gaps in ultramafic lichen community data, there is a lack of quantitative data for lichens of ultramafic substrates, which significantly limits our ability to (1) accurately characterize ultramafic lichen communities; (2) explore similarities and differences between ultramafic lichen communities; and (3) understand the effects of biotic and abiotic variation on these communities. The use of taxonomic inventory methods is informative, and has the advantages of being more straightforward

and less time consuming. However, inventories have significant limitations in the types of statistical analyses that can be used to make confident conclusions about taxonomic composition and relationships between composition and environmental factors. Sirois et al. (1988) recorded lichen species in relevé plots using Braun-Blanquet cover classes. This quantitative approach allowed them to draw conclusions about differences in taxonomic diversity (measured via the Shannon Index) and make robust conclusions about the dominant species present on ultramafic and amphibolite substrates. Ryan (1988b) recorded percentage cover of each lichen species in quadrats placed along elevational transects on a rocky seashore. This approach allowed the author to demonstrate changes in percentage cover and frequency in different intertidal zones and show how the dominant lichen species change along the elevational gradient in response to factors such as salt spray and bird manuring. Another important approach to characterizing diversity is the use of genetic studies, which may have the potential to uncover distinct genotypes of mycobionts and photobionts (Nadyeina et al. 2014; Jüriado et al. 2019; Ruprecht et al. 2020) occurring on ultramafic substrates.

Future studies would benefit from collection of substrate data, particularly elemental composition, but also mineralogy, hardness, and surface texture. Ultramafic rocks may vary significantly in concentrations of several elements (Coleman and Jove 1992) which are likely of significance for lichens (e.g., calcium). However, the only North American study that has collected elemental composition data is by Rajakaruna et al. (2012). They reported differences in the elemental composition of rocks at different ultramafic and nonultramafic lichen-sampling sites and related this to the lichen inventories recorded from each site. Their study found a significant effect of rock elemental makeup on lichen assemblage composition, and identified lichen species that were useful in distinguishing ultramafic from nonultramafic rocks. However, the specific interactions between elemental composition and lichen composition were not explored, and the effects of particular elemental concentrations, bioavailability, pH, or other abiotic factors related to elemental composition remain unclear.

Conclusions

- Lichen assemblages of ultramafic rocks and soils in North America vary widely in composition, but are generally characterized by acidophytic taxa and taxa with wide pH tolerance, with the consistent co-occurrence of a small number of basiphytic taxa. Ultramafic lichen assemblages show high species turnover at varying local, regional, and continental scales, suggesting that factors unrelated to the distinctive substrate properties of ultramafic rocks, and possibly variation in the substrate properties of ultramafic rocks and soils, have larger effects on lichen assembly.
- Ultramafic substrates may harbor unique lichen biotas at regional scales within the North American continent. However, a lack of focused study on biotas of adjacent nonultramafic lithologies limits our ability to compare lichen biotas

- between substrates as well as identify substrates and areas worthy of consideration for lichen conservation.
- The microhabitat characteristics of ultramafic rocks and soils are likely an important factor for lichens of these substrates. The relative openness and aridity of such areas likely results in the disjunct populations of lichens found in eastern North America and elsewhere.
- While lichens of ultramafic rocks and soils have received more study in North America than other lithologies, many aspects of ultramafic lichen biotas remain unexplored, and the lichen diversity of large regions of ultramafic rocks and soils remain poorly known. The state of knowledge of lichens of ultramafic habitats would benefit from future focused study of undersampled areas as well as an increased focus on quantitative studies relating lichen community data to substrate, microhabitat, and climatic variation.

Acknowledgements

The authors thank Bill and Linda Frost, whose funding of the Frost Summer Undergraduate Research Program at Cal Poly made this review possible. We also thank the California Lichen Society, American Bryological and Lichenological Society, California Botanical Society, Northern California Botanists, and the San Luis Obispo Chapter of the California Native Plant Society. Their support of related work through grant funding helped make this review possible. We are indebted to the two anonymous reviewers for providing critical feedback that greatly improved the manuscript. Finally, we are grateful to Sergio Favero-Longo and Alexander Paukov for their early input, and to Karen Dillman for her input on lichens recorded from ultramafic habitats in southeastern Alaska.

Article information

History dates

Received: 3 October 2021 Accepted: 2 February 2022

Accepted manuscript online: 14 March 2022 Version of record online: 18 July 2022

Copyright

© 2022 The Author(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Author information

Author ORCIDs

Michael Mulroy https://orcid.org/0000-0003-0796-7567 Alan M. Fryday https://orcid.org/0000-0002-5310-9232 Amanda Gersoff https://orcid.org/0000-0001-8197-5392 Jason Dart https://orcid.org/0000-0002-5656-066X Rikke Reese Næsborg https://orcid.org/0000-0001-8187-1040 Nishanta Rajakaruna https://orcid.org/0000-0002-9021-6918

References

- Alpert, P. 2000. The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol. 151(1): 5–17. doi:10.1023/A:1026513800380.
- Armstrong, R.A. 2017. Adaptation of lichens to extreme conditions. *In* Plant adaptation strategies in changing environment. *Edited by* V. Shukla, S. Kumar, and N. Kumar. Springer, Singapore. pp. 1–27. doi:10.1007/978-981-10-6744-0_1.
- Baltzo, D.E. 2001. San Francisco watershed lichens a more comprehensive list. Bull. Calif. Lichen Soc. 8(2): 44–56.
- Bates, S.T., Berg-Lyons, D., Lauber, C.L., Walters, W.A., Knight, R., and Fierer, N. 2012. A preliminary survey of lichen associated eukaryotes using pyrosequencing. Lichenologist, 44(1): 137–146. doi:10.1017/ s0024282911000648.
- Benson, S. 2016. 2016 CALS annual meeting in southern California. Bull. Calif. Lichen Soc. 23(1): 16–22.
- Benson, S., Carlberg, T., and Doell, J. 2012. Lichens of the presidio of San Francisco. Bull. Calif. Lichen Soc. 19(1): 31–44.
- Brady, K.U., Kruckeberg, A.R., and Bradshaw, H.D. 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. Syst. 36: 243–266. doi:10.1146/annurev.ecolsys.35.021103.105730.
- Bratt, C.C., and Wright, D. 1995. *Toninia* in California. Bull. Calif. Lichen Soc. 2(1): 5–7.
- Breuss, O., and Bratt, C.C. 2000. Catapyrenoid lichens in California. Bull. Calif. Lichen Soc. 7(2): 36–42.
- Brodo, I.M. 1973. Substrate ecology. *In* The lichens. *Edited by* V. Ahmadjian, and M.E. Hale. Academic Press, New York, USA. pp. 401–441.
- Brodo, I.M., Sharnoff, S.D., and Sharnoff, S. 2001. Lichens of North America. Yale University Press, New Haven, CT, USA. pp. 45–53.
- Burt, R., Fillmore, M., Wilson, M.A., Gross, E.R., Langridge, R.W., and Lammers, D.A. 2001. Soil properties of selected pedons on ultramafic rocks in Klamath Mountains, Oregon. Commun. Soil Sci. Plan. 32(13– 14): 2145–2175. doi:10.1081/CSS-120000275.
- Cacho, N.I., and Strauss, S.Y. 2014. Occupation of bare habitats, an evolutionary precursor to soil specialization in plants. Proc. Natl. Acad. Sci. USA 111(42): 15132–15137. doi:10.1073/pnas.1409242111. PMID: 25267640
- Coleman, R.G., and Jove, C. 1992. Geological origin of serpentinites. In *The vegetation of ultramafic (serpentine) soils. Edited by A.J.M.* Baker, J. Proctor, and R.D. Reeves. Intercept, Andover, Hampshire, UK. pp. 1–17.
- Consortium of North American Lichen Herbaria (CNALH). 2021. Available at: http://:lichenportal.org/cnalh/index.php [accessed 14 June 2021].
- Doell, J., and Wright, D. 1996. Macrolichens of jasper ridge biological preserve, San Mateo County, California. Bull. Calif. Lichen Soc. 3(1): 1–8.
- Doell, J., Robertson, J., Benson, S., and Carlberg, T. 2009. The lichens of Claremont Canyon. Bull. Calif. Lichen Soc. 16(2): 40–45.
- Esslinger, T.L. 2019. A cumulative checklist for the lichen-forming, lichenicolous and allied fungi of the continental United States and Canada, version 23. Opusc. Philolichenum, 18: 102–378.
- Favero-Longo, S.E. 2014. Lichens on metal-rich substrates. *In Plant Ecology and Evolution in Harsh Environments*. *Edited by N. Rajakaruna*, R.S. Boyd, and T.B. Harris. Nova Science Publishers, pp. 53–76.
- Favero-Longo, S.E., and Piervittori, R. 2009. Measuring the biodiversity of saxicolous lichens above timberline with reference to environmental factors: the case-study of a Natura 2000 site of western Alps. Phytocoenologia, 39(1): 51–78. doi:10.1127/0340-269X/2009/0039-0051.
- Favero-Longo, S.E., Isocrono, D., and Piervittori, R. 2004. Lichens and ultramafic rocks: a review. Lichenologist, 36(6): 391–404. doi:10.1017/S0024282904014215.
- Favero-Longo, S.E., Matteucci, E., Giordani, P., Paukov, A.G., and Rajakaruna, N. 2018. Diversity and functional traits of lichens in ultramafic areas: a literature-based worldwide analysis integrated by field data at the regional scale. Ecol. Res. 33(3): 593–608. doi:10.1007/s11284-018-1573-5
- Fryday, A. 2005. The genus *Porpidia* in northern and western Europe, with special emphasis on collections from the British Isles. Lichenologist, **37**(1): 1–35. doi:10.1017/S0024282904014628.
- Galey, M.L., van der Ent, A., Iqbal, M.C.M., and Rajakaruna, N. 2017. Ultramafic geoecology of South and Southeast Asia. Bot. Stud. **58**(1): 18. doi:10.1186/s40529-017-0167-9. PMID: 28510201

- Garty, J., and Galun, M. 1974. Selectivity in lichen-substrate relationships. Flora, **163**(6): 530–534. doi:10.1016/S0367-2530(17)31776-0.
- GBIF Secretariat. 2021. GBIF Backbone Taxonomy. Checklist dataset. doi:10.15468/39omei. Available at: GBIF.org [accessed 16 September 2021].
- Ghasemi, R., Sharifi, R., and Ghaderian, S.M. 2020. Studying the roles of calcium and magnesium in cell death in the serpentine native plant *Alyssum inflatum* through cell suspension culture technique. Plant Physiol. Bioch. **151**: 362–368. doi:10.1016/j.plaphy.2020.03.032.
- Gilbert, O.L. 1984. Lichens of the Magnesian Limestone. Lichenologist, **16**(1): 31–43. doi:10.1017/S0024282984000062.
- Gilbert, O.L. 1996. The lichen vegetation of chalk and limestone streams in Britain. Lichenologist, 28(2): 145–159. doi:10.1006/lich.1996.0013.
 Gilbert, O.L. 2000. Lichens. HarperCollins, London, UK.
- Gilbert, O.L., and James, P.W. 1987. Field meeting on the Lizard Peninsula, Cornwall. Lichenologist, 19(3): 319–334. doi:10.1017/ S0024282987000288.
- Grube, M. 2010. Die hard: lichens. *In* Symbioses and stress: joint ventures in biology. *Edited by* J. Seckbach, and M. Grube. Springer, Netherlands, Dordrecht(Cellular Origin, Life in Extreme Habitats and Astrobiology). pp. 509–523. doi:10.1007/978-90-481-9449-0_26.
- Hansen, C., and Goertzen, L. 2012. Psora icterica (Lecanorales, Psoraceae), a new and interesting disjunction from Alabama. Opusc. Philolichenum, 12: 49–51.
- Harris, T.B., Olday, F.C., and Rajakaruna, N. 2007. Lichens of Pine Hill, a peridotite outcrop in eastern North America. Rhodora, 109(940): 430–447. doi:10.3119/0035-4902(2007)109[430:LOPHAP]2.0.CO;2.
- Hawksworth, D.L., and Grube, M. 2020. Lichens redefined as complex ecosystems. New Phytol. **227**(5): 1281–1283. doi:10.1111/nph.16630. PMID: 32484275
- Index Fungorum Partnership. 2021. Index Fungorum. A community resource. Available at: http://www.indexfungorum.org [accessed 25 September 2021].
- Jørgensen, P.M. 2000. Survey of the lichen family pannariaceae on the American Continent, North of Mexico. Bryologist, 103(4): 670–704. doi:10.1639/0007-2745(2000)103[0670:SOTLFP]2.0.CO;2
- Jüriado, I., Kaasalainen, U., Jylhä, M., and Rikkinen, J. 2019. Relationships between mycobiont identity, photobiont specificity and ecological preferences in the lichen genus *Peltigera* (Ascomycota) in Estonia (northeastern Europe). Fungal Ecol. 39: 45–54. doi:10.1016/j.funeco. 2018.11.005.
- Krevor, S.C., Graves, C.R., Van Gosen, B.S., and McCafferty, A.E. 2009. Mapping the mineral resource base for mineral carbon-dioxide sequestration in the conterminous United States: U.S. geological survey digital data series 414. [Only available at URL https://pubs.usgs.gov/ds/414]].
- Kruckeberg, A.R. 1992. Plant life of western North American ultramafics. In The ecology of areas with serpentinized rocks: a world view. Edited by B.A. Roberts, and J. Proctor. Springer Netherlands, Dordrecht (Geobotany). pp. 31–73.
- Kruckeberg, A.R. 2002. Geology and plant life: the effects of landforms and rock types on plants. University of Washington Press, Seattle, USA.
- Lawrey, J.D., and Diederich, P. 2018. Lichenicolous fungi: world-wide checklist, including isolated cultures and sequences available. Available at: http://www.lichenicolous.net[accessed 27 September 2021].
- Le Maitre, R., Streckeisen, A., Zanettin, B., Le Bas, M., Bonin, B., and Bateman, P.(Eds.). 2002. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks(2nd ed.). Cambridge University Press, Cambridge, UK. doi:10. 1017/CBO9780511535581 [accessed 10 June 2020].
- Lendemer, J.C. 2004. Lichens of eastern north america exsiccati. Fascicle III, nos. 101-150. Opusc. Philolichenum, 1: 41–54.
- Lendemer, J.C. 2005. Contributions to the lichen flora of pennsylvania: the lichen flora of the diabase region of northern bucks and montgomery counties. Opusc. Philolichenum, 2: 21–26.
- Lendemer, J.C. 2008. A note on the occurrence of *Psora i cterica* in Eastern North America. Evansia, **25**(1): 1–2. doi:10.1639/0747-9859-25.1.1.
- Lendemer, J.C., and Harris, R.C. 2013a. Cladonia appalachensis, belated description of a southern Appalachian lichen endemic from the Great Smoky Mountains. Opusc. Philolichenum, 12: 17–22.

- Lendemer, J.C., and Harris, R.C. 2013b. Buellia sharpiana (Physciaceae, lichenized Ascomycetes), another new species from the Great Smoky Mountains of eastern North America. Castanea, 78: 148–153.10.2179/13-002.
- Lendemer, J.C., and Tripp, E.A. 2015. *Lecanora anakeestiicola* (Lecanorales): an unusual new fruticose species from Great Smoky Mountains National Park in eastern North America. Bryologist, **118**(1): 1–10. doi:10. 1639/0007-2745-118.1.001.
- Lendemer, J.C., Knudsen, K., and Coppins, B.J. 2009. Further notes on the genus *Ramonia* in California: the first modern record of *R. ablephora* and the description of *R. extensa* sp. nov. Opusc. Philolichenum, 7: 191–194.
- LIAS. 2021. A Global Information System for Lichenized and Non-Lichenized Ascomycetes. www.lias.net.
- Magney, D.L. 1999. Preliminary list of Rare California Lichens Bull. Calif. Lichen Soc. 6(2): 22–27.
- Malpas, J. 1992. Serpentine and the geology of serpentinized rocks. *In* The ecology of areas with serpentinized rocks: a world view. *Edited by* B.A. Roberts, and J. Proctor. Springer Netherlands, Dordrecht (Geobotany). pp. 7–30.
- McMullin, R.T., Gagnon, J., Anderson, F., Buck, W.R., Clayden, S.R., Dorin Fryday, A.F., et al. 2017. One hundred new provincial, national, and continental lichen and allied fungi records from Parc National de la Gaspésie, Québec, Canada. Northeast. Nat. **24**(4): 446–466. doi:10. 1656/045.024.0405
- Medeiros, I.D., Fryday, A.M., and Rajakaruna, N. 2014. Additional lichen records and mineralogical data from metal-contaminated sites in Maine. Rhodora, 116(967): 323–347. doi:10.3119/13–26.
- Miller, N.G., Fryday, A.M., and Hinds, J.W. 2005. Bryophytes and lichens of a calcium-rich spring seep isolated on the granitic terrain of Mt. Katahdin, Maine, USA Rhodora, 107(932): 339–358. doi:10.3119/05-7.1.
- Moores, E.M. 2011. Serpentinites and other ultramafic rocks: why they are important for earth's history and possibly for its future. *In* Serpentine: the evolution and ecology of a model system. *Edited by* S.P. Harrison, and N. Rajakaruna. University of California Press, Berkeley, CA. USA, pp. 3–28.
- Nadyeina, O., Dymytrova, L., Naumovych, A., Postoyalkin, S., Werth, S., and Cheenacharoen, S., 2014. Microclimatic differentiation of gene pools in the *Lobaria pulmonaria* symbiosis in a primeval forest landscape. Mol. Ecol. 23(21): 5164–5178. doi:10.1111/mec.12928. PMID: 25244617
- Nash, T.H., Ryan, B.D., Gries, C., and Bungartz, F.(eds.). 2002. Lichen Flora of the Greater Sonoran Desert Region. Vol 1. Lichens Unlimited, Tempe, AZ, USA. pp. 532.
- Nash, T.H., Ryan, B.D., Gries, C., and Bungartz, F.(eds.). 2004. Lichen Flora of the Greater Sonoran Desert Region. Vol 2. Lichens Unlimited, Tempe, AZ, USA. pp. 742.
- Nash, T.H., Ryan, B.D., Gries, C., and Bungartz, F.(eds.). 2007. Lichen Flora of the Greater Sonoran Desert Region. Vol 3. Lichens Unlimited, Tempe, AZ, USA. pp. 567.
- Natural Earth. 2021. Natural Earth. Free vector and raster map data at 1:10m, 1:50m, and 1:110m scales. Available at: https://www.naturalearthdata.com/downloads/10m-cultural-vect ors/10m-admin-0-boundary-lines/ [accessed 14 September 2021].
- Nimis, P.L. 2016. 'ITALIC The Information System on Italian Lichens. Version 5.0.' Available at: http://dryades.units.it/italic [accessed 10 September 2020].
- Nimis, P.L. 2021. Nimis lichen herbarium database. Available at: https://www.units.it/cgi-bin/g/bot/leggi [accessed 10 September 2020].
- O'Dell, R.E., and Claassen, V.P. 2006. Serpentine and nonserpentine *Achillea millefolium* accessions differ in serpentine substrate tolerance and response to organic and inorganic amendments. Plant Soil **279**(1): 253–269. doi:10.1007/s11104-005-2360-y.
- O'Dell, R.E., and Rajakaruna, N. 2011. Intraspecific variation, adaptation, and evolution. *In* Serpentine: The evolution and ecology of a model system. *Edited by* S.P. Harrison, and N. Rajakaruna. University of California Press, Berkeley, CA, USA. pp. 97–137.
- Oze, C., Bird, D.K., and Fendorf, S. 2007. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc. Natl. Acad. Sci. USA 104(16): 6544–6549. doi:10.1073/pnas.0701085104.

- Paukov, A., and Trapeznikova, S. 2005. Lithophilous lichens of Middle Urals. Folia Cryptog. Estonica, 41: 81–88.
- Paukov, A.G. 2009. The lichen flora of serpentine outcrops in the Middle Urals of Russia. Northeast. Nat. 16(sp5): 341–350. doi:10.1656/045. 016.0525.
- Peterson, E. 2003. Clarification of three Umbilicaria species new to California. Bull. Calif. Lichen Soc. 10(1): 10.
- Printzen, C., and Tønsberg, T. 1999. The lichen genus *Biatora* in northwestern North America ', Bryologist, **102**(4): 692–713. doi:10.2307/3244256.
- Purvis, O.W., and Halls, C. 1996. A review of lichens in metal-enriched environments. Lichenologist, 28(6): 571–601. doi:10.1006/lich.1996.
- Rajakaruna, N., and Boyd, R.S. 2014. Serpentine soil. Oxford Bibliographies of Ecology. doi:10.1093/OBO/9780199830060-0055.
- Rajakaruna, N., Knudsen, K., Fryday, A.M., O'Dell, R.E., Pope, N., and Olday, F.C., 2012. Investigation of the importance of rock chemistry for saxicolous lichen communities of the New Idria serpentinite mass, San Benito County, California, USA. Lichenologist, 44(5): 695–714. doi:10.1017/S0024282912000205.
- Reed, C.F. 1986. Lichens of the serpentine barrens. *In* Floras of the serpentinite formations in eastern North America: with descriptions of geomorphology and mineralogy of the formations. Contrib. 30. Reed Herbarium, Baltimore, MD.
- Robertson, J., and Robertson, R. 2000. New and interesting records of Lichens from California. Bull. Calif. Lichen Soc. 7(2): 64–66.
- Robertson, J., and Robertson, R. 2001. New and interesting records of Lichens from California. Bull. Calif. Lichen Soc. 8(2): 56–58.
- Robertson, R., and Robertson, J. 2008. Under the Lens. Bull. Calif. Lichen Soc. **15**(1): 14–15.
- Ruprecht, U., Fernández-Mendoza, F., Türk, R., and Fryday, A.M. 2020. High levels of endemism and local differentiation in the fungal and algal symbionts of saxicolous lecideoid lichens along a latitudinal gradient in southern South America. Lichenologist, **52**(4): 287–303. doi:10.1017/S0024282920000225. PMID: 32788813
- Ryan, B. D. 1988b. Zonation of lichens on a rocky seashore on Fidalgo Island, Washington. Bryologist, **91**(3): 167–180. doi:10.2307/3243214.
- Ryan, B.D. 1988a. Marine and maritime lichens on serpentine rock on Fidalgo Island, Washington. Bryologist, **91**(3): 186–190. doi:10.2307/3243217.
- Ryan, B.D., and Timdal, E. 2002. Solenopsora. *In* Lichen Flora of the Greater Sonoran Desert Region. **Vol 1**. *Edited by* T.H. Nash, B.D. Ryan, C. Gries, and F. Bungartz, Lichens Unlimited, Tempe, AZ, USA. pp. 462–465.
- Sianta, S.A., and Kay, K.M. 2019. Adaptation and divergence in edaphic specialists and generalists: serpentine soil endemics in the California flora occur in barer serpentine habitats with lower soil calcium levels than serpentine tolerators. Am. J. Bot. 106(5): 690–703. doi:10.1002/ajb2.1285. PMID: 31070790
- Sigal, L.L. 1989. The lichens of serpentine rocks and soils in California. Mycotaxon, 34(1): 221–238.
- Sirois, L., Lutzoni, F., and Grandtner, M. 1988. Les lichens sur serpentine et amphibolite du plateau du Mont Albert, Gaspésie, Québec. Can. J. Bot. **66**(5): 851–862. doi:10.1139/b88-124.
- Statistics Canada. 2019. 2016 Census Boundary files. Available at: https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-2016-eng.cfm [accessed 14 September 2021].
- Tucker, S. 2017. Rare lichens collected in California by Judith (Judy) and Ron Roberston. Evansia, 34(3): 74–84. doi:10.1639/0747-9859-34.
- U.S. Census Bureau. 2018. Cartographic Boundary Files Shapefile. Available at: https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html [accessed 14 September 2021].
- Waters, D.P., and Lendemer, J.C. 2019. The lichens and allied fungi of Mercer County, New Jersey. Opusc. Philolichenum, 18: 17–51.
- Western Regional Climate Center. 2021. NCDC 1981-2010 Monthly Normals, Anacortes, Washington. Available at: https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?wa0176 [accessed 6 September 2021].
- Wirth, V. 1972. Die Silikatflechten Gemainschaften im ausseralpinen Zentraleuropa. Diss. Bot. 17: 1–306.